scholarly journals Multiparameter control modeling of electrical signal in a medium voltage network by Markov random approach

Author(s):  
D. Kabeya Nahum ◽  
G.B. Kosso ◽  
C.T. Mbikayi ◽  
Sadiki Amisini ◽  
L.Y. Kabeya Mukeba

In this paper, the electrical signals coupled to the fields present in a medium voltage network are analyzed by the randomMarkov approach. This approach with the contribution of the “Yakam Matrix” is studied to establish the quantitative approximationsof the current I and the voltage V in non-steady state conditions in order to efficiently deduct the error percent between theexperimental and the simulated results. Also, the aim was to determine the functional constant with infinite duration through multivariablestabilization in commandability and controllability process. The development of the transition and observability matrices ofthe electrical signals behavior to establish the initialization’s system of Dirichlet is presented where the vector  by the hidden Markovapproach revealed to be almost stable. The multiparameter analysis in non-steady state conditions is conducted to show the maximumprobability of the injected signals. The comparison of the experimental results with the simulation is presented with a 4% errorobtained by using MATLAB. Since the function current I(t) remains in (0  I  20)A conditions in case of phase disconnection.However, the application of the Markov random approach in electrical networks control modeling still require further studies andclarifications.

1962 ◽  
Vol 52 (4) ◽  
pp. 767-779
Author(s):  
A. F. Espinosa ◽  
G. H. Sutton ◽  
H. J. Miller

abstract A transient technique for seismograph calibration was developed and tested by a variety of methods. In the application of this technique a known transient in the form of an electrical signal is injected, through (a) a Willmore-type calibration bridge or (b) an independent coil, into the seismometer and the corresponding output transient of the system is recorded. The ratio of the Fourier transform of this transient to that of the input pulse yields phase and relative amplitude response of the seismograph as a function of period. Absolute amplitude response may be calculated if two easily determined constants of the seismometer are known. This technique makes practical the daily calibration of continuously-recording seismographs without disturbing the instruments more than a very few minutes. The transient technique was tested and proven satisfactory with results of more conventional steady-state methods, using both digital and analog analyses of the output transients. A variety of output transients corresponding to various theoretical response curves has been calculated for two standard input transients. By comparison of the calculated output transients with experimental results it is possible to obtain the response of the instrument with considerable precision quickly and without computation.


1990 ◽  
Vol 55 (11) ◽  
pp. 2648-2661 ◽  
Author(s):  
Helena Sovová ◽  
Vladislav Bízek ◽  
Jaroslav Procházka

In this work measurements of mean holdup of dispersed phase, of axial holdup profiles and of flooding points in a reciprocating plate contactor with both the VPE-type plates and the sieve plates were carried out. The experimental results were compared with a monodisperse model of steady-state column hydrodynamics and the model parameters were evaluated. Important differences in the behaviour of the two plate types could be identified. Comparison was also made between two reciprocating drives of different pulse form.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
R. K. Dhatrak ◽  
R. K. Nema ◽  
D. M. Deshpande

In today’s industrial world multilevel inverter (MLI) got a significant importance in medium voltage application and also a very potential topic for researchers. It is experienced that studying and comparing results of multilevel inverter (MLI) at distinct levels are a costlier and time consuming issue for any researcher if he fabricate different inverters for each level, as designing power modules simultaneously for different level is a cumbersome task. In this paper a flexible quotient has been proposed to recognize possible conversion of available MLI to few lower level inverters by appropriately changing microcontroller programming. This is an attempt to obtain such change in levels through simulation using MATLAB Simulink on inductive load which may also be applied to induction motor. Experimental results of pulse generation using dsPIC33EP256MC202 demonstrate the feasibility of proposed scheme. Proposed flexible quotient successfully demonstrates that a five-level inverter may be operated as three and two levels also. The paper focuses on odd levels only as common mode voltage (CMV) can be reduced to zero and performance of drives is better than even level. Simulated and experimental results are given in paper.


1968 ◽  
Vol 90 (1) ◽  
pp. 243-253 ◽  
Author(s):  
F. K. Orcutt ◽  
C. W. Ng

Calculated data on steady-state and dynamic properties of the plain cylindrical floating-ring bearing with pressurized lubricant supply are given. The data are for a bearing with L/D of 1, and values of the ratio of inner to outer film clearances of 0.7 and 1.3. One value of dimensionless supply pressure parameter is covered. Experimental results are presented which verify the calculated results and which supplement them, particularly with respect to stability characteristics of the bearing.


Author(s):  
Wei Yao ◽  
Zhaoming Qian

In this paper, an improved load sharing control scheme is presented, which is able to improve the transient response and power sharing accuracy of parallel-connected inverters used in microgrid. It also shows how the improved droop method can be easily adapted to account for the operation of parallel-connected inverters, providing good performance under the variation and disturbance of loads, as well as achieving good steady-state objectives and transient performance. Two DSP-based single-phase Microgrid inverters are designed and implemented. Simulation and experimental results are all reported, confirming the validity of the proposed control technique.


1961 ◽  
Vol 83 (2) ◽  
pp. 195-200 ◽  
Author(s):  
S. Cooper

The object of the paper is to indicate the value of theoretical investigations of hydrodynamic finite bearings under steady-state conditions. Methods of solution of Reynolds equation by both desk and digital computing, and methods of stabilizing the processes of solution, are described. The nondimensional data available from the solutions are stated. The outcome of an attempted solution of the energy equation is discussed. A comparison between some theoretical and experimental results is shown. Experimental methods employed and some difficulties encountered are discussed. Some theoretical results are given to indicate the effects of the inclusion of slip velocity, stabilizing slots, and a simple case of whirl.


2006 ◽  
Vol 4 (4) ◽  
pp. 516-519 ◽  
Author(s):  
D. Asprino ◽  
L. Conte ◽  
M. Pagano ◽  
G. Velotto

The paper focuses on the experimental results of a series of tests performed on a hybrid electrical source. The hybrid generator is made up of a fuel cell primary source equipped with an ultracapacitor storage device. The paper presents an examination of the steady-state and transient performance of the hybrid fuel cell-ultracapacitor source in terms of power quality. The aim is to investigate on fuel cell-ultracapacitor source’s behavior to feed pulsing loads.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Mohamad Adzeem Mohamad Yuden ◽  
Mariam Md Ghazaly ◽  
Aliza Che Amran ◽  
Irma Wani Jamaludin ◽  
Khoo Hui Yee ◽  
...  

Hazardous environments such as in industry sector with high chemical usage give high risks to the safety of workers. These risks can be reduced by designing robotic hand that is able to replace human works. For the industry purpose, the robotic hand needs to have a higher performance in accuracy, stability and consistency. However, the current robotic hand in industry is not flexible, which means it cannot be used for different tasks. Therefore, a multi-purpose robotic hand was developed. In this paper, the objectives of this research are to design and develop a PID controller for improving the performances of a robotic hand system. The experimental results prove that the PID controller shows good performances with the steady state error less than 0.110 for the input reference, 300 respectively.


2021 ◽  
Author(s):  
Sara Sharifian Attar

The goal of this research was to develop a capability for the electrothermal modeling of electronic circuits. The objective of the thermal modeling process was to create a model that represents the thermal behavior of the physical system. The project focuses on electrothermal analysis at devices and chip level. A novel method to perform electrothermal analysis of integrated circuits based on the relaxation approach is proposed in this research. An interface program couples a circuit simulator and a thermal simulator. The developed simulator is capable of performing both steady state and transient analaysis at devices and chip level. The proposed method was applied to perform electrothermal analysis of Silicon Bipolar Junction Transistor (BJT) to predict the temperature distribution and the device performance in a circuit. Thermal nonlinearity due to temperature-dependent material parameters in the context of thermal modeling of the device and circuit has also been considered. The DC characteristics of the device were investigated. The obtained results indicate that the operating point of the device varies while the device reaches its junction temperature. The accuracy of the electrothermal simulator has been evaluated for steady state analysis. The experimental results of a BJT amplifier were compared to the simulator results of the similar circuit. The electrothermal simulation results of BJT amplifier circuit indicate a good agreement with the available experimental results in terms of power dissipation, collector current and base-emitter voltage. The performance of the electrothermal simulator has been evaluated for tansient analysis. A current mirror circuit using Si NPN BJTs was simulated. According to the electrical simulator, the output current follows the reference current immediately. Nonetheless, the electrothermal simulator results depict that the load current has delay to reach a constant value which is not the same as the reference current, due to the influence of thermal coupling and self heating. The obtained results are in agreement with the available results in literature.


Sign in / Sign up

Export Citation Format

Share Document