POSITIONING CONTROL PERFORMANCES OF A ROBOTIC HAND SYSTEM

2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Mohamad Adzeem Mohamad Yuden ◽  
Mariam Md Ghazaly ◽  
Aliza Che Amran ◽  
Irma Wani Jamaludin ◽  
Khoo Hui Yee ◽  
...  

Hazardous environments such as in industry sector with high chemical usage give high risks to the safety of workers. These risks can be reduced by designing robotic hand that is able to replace human works. For the industry purpose, the robotic hand needs to have a higher performance in accuracy, stability and consistency. However, the current robotic hand in industry is not flexible, which means it cannot be used for different tasks. Therefore, a multi-purpose robotic hand was developed. In this paper, the objectives of this research are to design and develop a PID controller for improving the performances of a robotic hand system. The experimental results prove that the PID controller shows good performances with the steady state error less than 0.110 for the input reference, 300 respectively.

1990 ◽  
Vol 55 (11) ◽  
pp. 2648-2661 ◽  
Author(s):  
Helena Sovová ◽  
Vladislav Bízek ◽  
Jaroslav Procházka

In this work measurements of mean holdup of dispersed phase, of axial holdup profiles and of flooding points in a reciprocating plate contactor with both the VPE-type plates and the sieve plates were carried out. The experimental results were compared with a monodisperse model of steady-state column hydrodynamics and the model parameters were evaluated. Important differences in the behaviour of the two plate types could be identified. Comparison was also made between two reciprocating drives of different pulse form.


1968 ◽  
Vol 90 (1) ◽  
pp. 243-253 ◽  
Author(s):  
F. K. Orcutt ◽  
C. W. Ng

Calculated data on steady-state and dynamic properties of the plain cylindrical floating-ring bearing with pressurized lubricant supply are given. The data are for a bearing with L/D of 1, and values of the ratio of inner to outer film clearances of 0.7 and 1.3. One value of dimensionless supply pressure parameter is covered. Experimental results are presented which verify the calculated results and which supplement them, particularly with respect to stability characteristics of the bearing.


Author(s):  
Wei Yao ◽  
Zhaoming Qian

In this paper, an improved load sharing control scheme is presented, which is able to improve the transient response and power sharing accuracy of parallel-connected inverters used in microgrid. It also shows how the improved droop method can be easily adapted to account for the operation of parallel-connected inverters, providing good performance under the variation and disturbance of loads, as well as achieving good steady-state objectives and transient performance. Two DSP-based single-phase Microgrid inverters are designed and implemented. Simulation and experimental results are all reported, confirming the validity of the proposed control technique.


1961 ◽  
Vol 83 (2) ◽  
pp. 195-200 ◽  
Author(s):  
S. Cooper

The object of the paper is to indicate the value of theoretical investigations of hydrodynamic finite bearings under steady-state conditions. Methods of solution of Reynolds equation by both desk and digital computing, and methods of stabilizing the processes of solution, are described. The nondimensional data available from the solutions are stated. The outcome of an attempted solution of the energy equation is discussed. A comparison between some theoretical and experimental results is shown. Experimental methods employed and some difficulties encountered are discussed. Some theoretical results are given to indicate the effects of the inclusion of slip velocity, stabilizing slots, and a simple case of whirl.


2006 ◽  
Vol 4 (4) ◽  
pp. 516-519 ◽  
Author(s):  
D. Asprino ◽  
L. Conte ◽  
M. Pagano ◽  
G. Velotto

The paper focuses on the experimental results of a series of tests performed on a hybrid electrical source. The hybrid generator is made up of a fuel cell primary source equipped with an ultracapacitor storage device. The paper presents an examination of the steady-state and transient performance of the hybrid fuel cell-ultracapacitor source in terms of power quality. The aim is to investigate on fuel cell-ultracapacitor source’s behavior to feed pulsing loads.


2021 ◽  
Author(s):  
Sara Sharifian Attar

The goal of this research was to develop a capability for the electrothermal modeling of electronic circuits. The objective of the thermal modeling process was to create a model that represents the thermal behavior of the physical system. The project focuses on electrothermal analysis at devices and chip level. A novel method to perform electrothermal analysis of integrated circuits based on the relaxation approach is proposed in this research. An interface program couples a circuit simulator and a thermal simulator. The developed simulator is capable of performing both steady state and transient analaysis at devices and chip level. The proposed method was applied to perform electrothermal analysis of Silicon Bipolar Junction Transistor (BJT) to predict the temperature distribution and the device performance in a circuit. Thermal nonlinearity due to temperature-dependent material parameters in the context of thermal modeling of the device and circuit has also been considered. The DC characteristics of the device were investigated. The obtained results indicate that the operating point of the device varies while the device reaches its junction temperature. The accuracy of the electrothermal simulator has been evaluated for steady state analysis. The experimental results of a BJT amplifier were compared to the simulator results of the similar circuit. The electrothermal simulation results of BJT amplifier circuit indicate a good agreement with the available experimental results in terms of power dissipation, collector current and base-emitter voltage. The performance of the electrothermal simulator has been evaluated for tansient analysis. A current mirror circuit using Si NPN BJTs was simulated. According to the electrical simulator, the output current follows the reference current immediately. Nonetheless, the electrothermal simulator results depict that the load current has delay to reach a constant value which is not the same as the reference current, due to the influence of thermal coupling and self heating. The obtained results are in agreement with the available results in literature.


1982 ◽  
Vol 22 (04) ◽  
pp. 558-562 ◽  
Author(s):  
P.C. Rawat ◽  
S.L. Agarwal

Abstract An important parameter required for computing heat loss through buried submarine pipelines transporting crude oil is the thermal conductivity of soils. This paper describes an apparatus designed for determination of the thermal conductivity of soils at the desired moisture/ density condition in the laboratory under steady-state conditions. Experimental results on the three soils studied show that thermal conductivity increases as dry density increases at a constant moisture content and that it increases as water content increases at constant dry density. These results confirm the trends isolated earlier by Kersten. The experimental results are compared with the available empirical relationships. Kersten's relation is observed to predict the thermal conductivity of these soils reasonably. The predictions from Makowski and Mochlinski's relation (quoted by Szilas) are not good but improve if the sum of silt and clay fractions is treated as a clay fraction in the computation. Introduction Submarine pipelines are used extensively for transporting crude oil from offshore to other pipelines offshore or onshore. These pipelines usually are steel pipes covered with a coating of concrete. They often are buried some depth below the mudline. The rheological properties of different crude oils vary, and their viscosities increase with a decrease in temperature. Below some temperature, the liquid oil tends to gel. Therefore, for efficient transportation, the crude must be at a relatively high temperature so that it has a low viscosity. The temperature of the soil/water system surrounding a submarine pipeline is usually lower than that of oil. This temperature difference induces heat to flow from the oil to the environment, and the temperature of the oil decreases as it travels along the length of the pipeline. One must ensure that this temperature reduction does not exceed desirable limits dictated by the rheological properties of oil and by the imperatives of efficient economic properties of oil and by the imperatives of efficient economic transportation. Thus the analytical problem is to predict the temperature of crude in the pipeline some distance away from the input station. To do so, knowledge of the overall heat transfer coefficient for the pipeline is required, for which, in turn, it is necessary to know the thermal conductivities of the oil, the pipeline materials and its coating, and the soil. This paper presents thermal conductivities of soils determined in the laboratory under steady-state conditions and also presents a comparison of the test results of three soils with values determined from existing empirical relationships. Literature Review Heat moves spontaneously from higher to lower temperatures. In a completely dry porous body, transmission of heat can take place not only by conduction through the solid framework of the body and the air in the pores but also by convection and radiation between the walls of a pore and by macro- and microdistillation. In soils, however, it can be ascribed essentially to conduction, a molecular phenomenon that can be expressed in terms of experimentally determined coefficients of conductivity or resistivity, although these actually may include microdistillation and other mechanisms. SPEJ p. 558


2005 ◽  
Vol 20 (6) ◽  
pp. 1476-1484
Author(s):  
Jennifer L. Jordan ◽  
John A. Pelesko ◽  
Naresh N. Thadhani

A kinetics model based on mass and heat transport has been developed for Ti3SiC2 formation via shock-activated reaction synthesis of powder precursors. The model allows prediction of heat treatment conditions under which an otherwise steady-state reaction is taken over by a “run-away” combustion-type reaction during post-shock reaction synthesis of Ti3SiC2. Shock compression of Ti, SiC, and graphite precursors generates a densely packed highly activated state of reactants, which lowers the activation energy and results in an increased rate of formation of Ti3SiC2 at a lower temperature and in shorter times. The predictive model correlated with experimental results of fraction reacted as a function of time at heat-treatment temperatures of 1400 and 1600 °C illustrates an increased rate of reaction due to lowering activation energy, which also results in the reaction at 1600 °C being taken over by a “run-away” combustion-type reaction, as the rate of heat release due to reaction exceeds the rate of heat dissipation through the compact. Correlation of the model with experimental results illustrates that the predictive model can be used to optimize reaction synthesis conditions in shock-densified compacts of Ti3SiC2-forming powder precursors, to better understand the processes leading to a steady-state reaction being taken over by the combustion mode.


Sign in / Sign up

Export Citation Format

Share Document