scholarly journals Detection of Outlier Observations in Piezometric Measurements: A Case Study in the Southern Region of Poland

2021 ◽  
Vol 16 (1) ◽  
pp. 95-116
Author(s):  
Stanisław Lach

One of the main modes of monitoring the geotechnical conditions of earth dams is piezometric measurement, which measures water levels in an open piezometer or water pressure in a closed piezometer. During piezometric measurements, various types of factors can cause disturbances in these measurements that take the form of systematic, accidental, or obvious mistakes. Before measurements from open or closed piezometers are analyzed, outliers due to coarse errors should be detected and rejected. Such observations may significantly influence the result of the analysis and cause erroneous assessment and interpretation of the phenomenon studied. To do this, statistical tests must be applied so that the doubtful measurement can be accepted or rejected at the assumed significance level. This paper uses five statistical tests for identifying and rejecting outliers: the Q-Dixon test, the Grubbs test, as well as the Hampel test, the Iglewicz and Hoaglin test, and the Rosner test. The aim of this article is to try to identify the most suitable test for periodic piezometric measurements. The scope of the study includes the analysis of piezometric measurements for the Czaniec Dam for the multi-year period 2017–2020.

2018 ◽  
Vol 45 ◽  
pp. 00045 ◽  
Author(s):  
Stanisław Lach

Due to their size, water construction belongs to the largest and heaviest engineering structures. Ensuring the safe operation of such facilities requires continuous monitoring. Among the basic forms of monitoring in such facilities one should list continuous seasonal piezometric measurements, which are obligatory elements of general control measurements aimed at ensuring safety when using the facility. The latter is directly related to guaranteeing the safety of people living and working in an area exposed to destruction in the event of a possible disaster involving the building. From the perspective of increasing the safety of the hydrotechnical facility, optimal conditions occur when the water levels in piezometers oscillate around a constant value as this signalizes that filtration processes in the body and the surface of a dam are stable. Various factors may disturb measurements of water levels in open piezometers or water pressure in closed piezometers. These factors may take the form of systematic, random or obvious errors. Thus, before analyzing this type of data, the largest errors (outliers) should be removed from the sample as they could significantly affect the outcomes of analysis and lead to a false interpretation. In such a situation, it is necessary to apply respective statistical tests, which allow verification of whether a particular portion of data may be treated as a set of outliers at a given significance level α. In this work the following statistical tests were used to identify and remove outliers: Q-Dixon test, Grubbs test, Hampel test, Rosner test, Iglewicz and Hoaglin test, Tietjen-Moore test and quartile test. The scope of the empirical analysis is focused on piezometric measurements at the Dobczyce dam over the period 2012-2016.


2020 ◽  
Vol 33 (02) ◽  
pp. 737-745
Author(s):  
Amir Behshad

Installation and monitoring of instrumentation is one of the practical methods for controlling safety and stability of earth dams. Piezometers existing in dam body and dam abutments are one of the various types of precision instruments used in dams, which indicate the height of water level in different parts of the dam. In order to evaluate the performance of piezometers of Shah Qasim Dam in Kohgiluyeh and Boyerahmad province (in south east of Iran), we compare water level changes in piezometer and water level changes in the dam lake over time. In this paper, the above mentioned dam is modelled using the SEEP/W software, then after imposing boundary conditions, water levels are computed at various points. For more accurate comparison, water level changes are plotted in transverse and longitudinal piezometers over time. The results of analysis indicate significant increase of permeability in vicinity of some piezometers. The piezometers BX4, BX14, BX13 and SP6, and the region near them, as well as piezometers SP24 and SP18 and their surrounding area, have critical conditions which should be inspected as soon as possible.


10.29007/gbqh ◽  
2018 ◽  
Author(s):  
Roberto Ranzi ◽  
Massimo Tomirotti ◽  
Michele Brunetti ◽  
Alice Crespi ◽  
Maurizio Maugeri

A recovery of ancient records of the Como Lake water levels at the Fortilizio in Lecco hydrometric station enabled the reconstruction of a time series of daily water level and runoff from the Como Lake spanning the 1845-2014 period. In parallel, the monthly areal precipitation at the Adda river catchment scale was estimated for the same 170 years- long period. This time series, which is one of the longest available for Italian riverbasins will support analyses of the reasons of changes in the runoff regime in response to climatic and anthropogenic changes. A comparison of the two series applying the Mann- Kendall, Spearman and Theil-Sen trend tests, shows a decline, in the long term, of runoff and a more significant one of precipitation. Because some changes in the operation at the outlet of the Como Lake occurred after 1946 and also in the storage capacity of the upstream reservoirs the time series was splitted in two periods, before and after 1946. The results of the statistical tests for both precipitation and runoff in three time periods are consistent, but only for the time series of annual runoff the decline is statistically significant with 5% significance level. To analyse if changes occurred at different time scales the wavelet transform was applied to the daily runoff series. Finally the Fourier power spectrum of the the daily runoff data shows a signal of higher energy corresponding to a period between 11 and 13 years, close to the sunspots cycle period, and its significance is under investigation.


Author(s):  
Saad Shauket Sammen ◽  
Marwah Qaddoori Majeed ◽  
Qutaiba G. Majeed

Recently the numerical modeling using finite element method is take into account as a very effective tool to investigate the desired behavior of structures in geotechnical engineering. Earth dams are a water retention structures that are normally wide constructed around the world due to its significant features. These structures may be failed due to exposure to an earthquake and this will result in disaster. The main objective of this study is to assess the slope stability and the seismic response of an earthen dam. Since the matter of seismic response is still have a considerable lack of information for earth dams as a unique structure. Hemren zoned earth dam that is located in Diyala governorate, northeast of Iraq that considered as an active seismic zone has been considered as case study. Numerical modeling has been done in this study using Geo studio software. Factor of safety was calculated with different water levels in order to evaluate the dam safety with different operation water level. The excited earthquake is Elcentro while three values of peak ground acceleration were used which are 0.2, 0.25 and 0.3 g and the duration time is scaled to 10 seconds. In addition, three key points (at the core, the shell and the foundation) that represent the dam construction material are used to evaluate the dynamic response within the dam body. The results revealed that the factor of safety is increased when the water level is increase, but in the increasing in the magnitude of factor of safety with water depths of (10 and 15) m was more than the other depth. The zone of the dam core shows a negative pore water pressure value. That leads to an increasing in effective stress at the core of the dam.


2020 ◽  
Vol 24 (4) ◽  
pp. 189-194
Author(s):  
Wasim Khan ◽  
Salahuddin Khan ◽  
Tasleem Arif ◽  
Sohail R. Khan

Background and Study Aim: The main purpose behind the study was to establish the challenges in relation to the acquisition of life skills among university student-athletes of Khyber Pakhtunkhwa. The study assessed the extent to which the concern existing resources, facilitators, and trainer attitude influences life skills acquisition among student-athletes. Material and Methods: Descriptive survey research design was followed to obtain desirable results. The target population of this study consisted of all those who participated in different sport at the university level of Khyber Pakhtunkhwa (KP), Pakistan. Amongst them, we selected a representative sample (n=389 fifty 50% of the total population) with the help of a simple random sampling technique. The Statistical Package for Social Sciences (SPSS) version, 24 was used to code and analyse the data. The hypotheses were tested by applying statistical tests like Step-wise regression and independents sample t-test. The significance level of 0.05 was fixed to accept or reject the set hypotheses. Results: Findings of the study indicated that existing resources, facilitators, and trainer/coach attitude significantly influences life skills acquisition among student-athletes (.001, .001 & .000 < .05). The analysed data revealed no significantly difference regarding extent to which specific challenges such as existing resources, facilitators, and trainer attitude influences the acquisition of life skills (.500, .133 & .149 > .05). Conclusions: The findings of the study revealed that all participants have agreed upon the importance of life skills. Therefore, the life skills course might be considered as an integral part of every educational curriculum of Pakistan. It is suggested that a minimum of 2 hours per week may be included in the educational curriculum of each discipline.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 683
Author(s):  
Birte Moser ◽  
Meruyert Beknazarova ◽  
Harriet Whiley ◽  
Thilini Piushani Keerthirathne ◽  
Nikki Harrington ◽  
...  

Iron-related clogging of boreholes, pumps and dripper lines is a significant and costly problem for irrigators worldwide. The primary cause of iron-related clogging is still debated. Previous studies have described complex interactions between biological clogging and inorganic iron/manganese oxide precipitation. This case study examined groundwater bores used for viticulture irrigation in the Limestone Coast region, a highly productive wine growing area in the SE of South Australia. Iron clogging of bore screens, pumps and dripper systems has been a persistent problem in the region and the issue is perceived to be growing, with irrigators suggesting the widespread introduction of iron-related bacteria (IRB) through drilling equipment to be the root cause of the problem. Analysis of the groundwater microbiology and inorganic chemistry found no apparent correlation between the presence of IRB and the clogging status of wells. In fact, IRB proved to be widespread throughout the limestone aquifer. However, a clear correlation could be found between clogging affected bores and the redox potential of the groundwater with the most severely affected bores strongly oversaturated in respect to iron oxide minerals. Elevated dissolved concentrations of Fe(II) thereby tended to be found in deeper bores, which also were generally more recently drilled. Following decades of less than average rainfall, a tendency to deepen bores in response to widespread declines in water levels has been documented for the SE of South Australia. The gradually widening clogging problem in the region is postulated to be related to the changes in climate in the region, with irrigators increasingly driven to rely on deeper, anoxic iron-rich groundwater resources.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1061
Author(s):  
Thanh Thi Luong ◽  
Judith Pöschmann ◽  
Rico Kronenberg ◽  
Christian Bernhofer

Convective rainfall can cause dangerous flash floods within less than six hours. Thus, simple approaches are required for issuing quick warnings. The flash flood guidance (FFG) approach pre-calculates rainfall levels (thresholds) potentially causing critical water levels for a specific catchment. Afterwards, only rainfall and soil moisture information are required to issue warnings. This study applied the principle of FFG to the Wernersbach Catchment (Germany) with excellent data coverage using the BROOK90 water budget model. The rainfall thresholds were determined for durations of 1 to 24 h, by running BROOK90 in “inverse” mode, identifying rainfall values for each duration that led to exceedance of critical discharge (fixed value). After calibrating the model based on its runoff, we ran it in hourly mode with four precipitation types and various levels of initial soil moisture for the period 1996–2010. The rainfall threshold curves showed a very high probability of detection (POD) of 91% for the 40 extracted flash flood events in the study period, however, the false alarm rate (FAR) of 56% and the critical success index (CSI) of 42% should be improved in further studies. The proposed adjusted FFG approach has the potential to provide reliable support in flash flood forecasting.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 502
Author(s):  
Jinman Kim ◽  
Heuisoo Han ◽  
Yoonhwa Jin

This paper shows the results of a field appliance study of the hydraulic well method to prevent embankment piping, which is proposed by the Japanese Matsuyama River National Highway Office. The large-scale embankment experiment and seepage analysis were conducted to examine the hydraulic well. The experimental procedure is focused on the pore water pressure. The water levels of the hydraulic well were compared with pore water pressure data, which were used to look over the seepage variations. Two different types of large-scale experiments were conducted according to the installation points of hydraulic wells. The seepage velocity results by the experiment were almost similar to those of the analyses. Further, the pore water pressure oriented from the water level variations in the hydraulic well showed similar patterns between the experiment and numerical analysis; however, deeper from the surface, the larger pore water pressure of the numerical analysis was calculated compared to the experimental values. In addition, the piping effect according to the water level and location of the hydraulic well was quantitatively examined for an embankment having a piping guide part. As a result of applying the hydraulic well to the point where piping occurred, the hydraulic well with a 1.0 m water level reduced the seepage velocity by up to 86%. This is because the difference in the water level between the riverside and the protected side is reduced, and it resulted in reducing the seepage pressure. As a result of the theoretical and numerical hydraulic gradient analysis according to the change in the water level of the hydraulic well, the hydraulic gradient decreased linearly according to the water level of the hydraulic well. From the results according to the location of the hydraulic well, installation of it at the point where piping occurred was found to be the most effective. A hydraulic well is a good device for preventing the piping of an embankment if it is installed at the piping point and the proper water level of the hydraulic well is applied.


Sign in / Sign up

Export Citation Format

Share Document