scholarly journals Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Luca Albergante ◽  
J Julian Blow ◽  
Timothy J Newman

The gene regulatory network (GRN) is the central decision‐making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large‐scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heather S. Deter ◽  
Tahmina Hossain ◽  
Nicholas C. Butzin

AbstractAntibiotic treatment kills a large portion of a population, while a small, tolerant subpopulation survives. Tolerant bacteria disrupt antibiotic efficacy and increase the likelihood that a population gains antibiotic resistance, a growing health concern. We examined how E. coli transcriptional networks changed in response to lethal ampicillin concentrations. We are the first to apply transcriptional regulatory network (TRN) analysis to antibiotic tolerance by leveraging existing knowledge and our transcriptional data. TRN analysis shows that gene expression changes specific to ampicillin treatment are likely caused by specific sigma and transcription factors typically regulated by proteolysis. These results demonstrate that to survive lethal concentration of ampicillin specific regulatory proteins change activity and cause a coordinated transcriptional response that leverages multiple gene systems.


2016 ◽  
Author(s):  
Dianbo Liu ◽  
Luca Albergante ◽  
Timothy J Newman

AbstractUsing a combination of mathematical modelling, statistical simulation and large-scale data analysis we study the properties of linear regulatory chains (LRCs) within gene regulatory networks (GRNs). Our modelling indicates that downstream genes embedded within LRCs are highly insulated from the variation in expression of upstream genes, and thus LRCs act as attenuators. This observation implies a progressively weaker functionality of LRCs as their length increases. When analysing the preponderance of LRCs in the GRNs of E. coli K12 and several other organisms, we find that very long LRCs are essentially absent. In both E. coli and M. tuberculosis we find that four-gene LRCs are intimately linked to identical feedback loops that are involved in potentially chaotic stress response, indicating that the dynamics of these potentially destabilising motifs are strongly restrained under homeostatic conditions. The same relationship is observed in a human cancer cell line (K562), and we postulate that four-gene LRCs act as “universal attenuators”. These findings suggest a role for long LRCs in dampening variation in gene expression, thereby protecting cell identity, and in controlling dramatic shifts in cell-wide gene expression through inhibiting chaos-generating motifs.In briefWe present a general principle that linear regulatory chains exponentially attenuate the range of expression in gene regulatory networks. The discovery of a universal interplay between linear regulatory chains and genetic feedback loops in microorganisms and a human cancer cell line is analysed and discussed.HighlightsWithin gene networks, linear regulatory chains act as exponentially strong attenuators of upstream variationBecause of their exponential behaviour, linear regulatory chains beyond a few genes provide no additional functionality and are rarely observed in gene networks across a range of different organismsNovel interactions between four-gene linear regulatory chains and feedback loops were discovered in E. coli, M. tuberculosis and human cancer cells, suggesting a universal mechanism of control.


2018 ◽  
Author(s):  
Amy Switzer ◽  
Dimitrios Evangelopoulos ◽  
Rita Figueira ◽  
Luiz Pedro S. de Carvalho ◽  
Daniel R. Brown ◽  
...  

ABSTRACTThe initial adaptive transcriptional response to nitrogen (N) starvation inEscherichia coliinvolves large-scale alterations to the transcriptome mediated by the transcription activator, NtrC. One of the NtrC-activated genes isyeaG, which encodes a conserved bacterial kinase. Although it is known that YeaG is required for optimal survival under sustained N starvation, the molecular basis by which YeaG benefits N starvedE. coliremains elusive. By combining transcriptomics with targeted metabolomics analyses, we demonstrate that the methionine biosynthesis pathway becomes transcriptionally dysregulated inΔyeaGbacteria experiencing sustained N starvation. This results in the aberrant and energetically costly biosynthesis of methionine and associated metabolites under sustained N starvation with detrimental consequences to cell viability. It appears the activity of the master transcriptional repressor of methionine biosynthesis genes, MetJ, is compromised inΔyeaGbacteria under sustained N starvation, resulting in transcriptional derepression of MetJ-regulated genes. The results suggest that YeaG is a novel regulatory factor and functions as a molecular brake in the transcriptional control of both the NtrC-regulon and methionine biosynthesis genes inE. coliexperiencing sustained N starvation.


2018 ◽  
Vol 46 (6) ◽  
pp. 1721-1728 ◽  
Author(s):  
Amy Switzer ◽  
Daniel R. Brown ◽  
Sivaramesh Wigneshweraraj

Bacterial adaptive responses to biotic and abiotic stresses often involve large-scale reprogramming of the transcriptome. Since nitrogen is an essential component of the bacterial cell, the transcriptional basis of the adaptive response to nitrogen starvation has been well studied. The adaptive response to N starvation in Escherichia coli is primarily a ‘scavenging response’, which results in the transcription of genes required for the transport and catabolism of nitrogenous compounds. However, recent genome-scale studies have begun to uncover and expand some of the intricate regulatory complexities that underpin the adaptive transcriptional response to nitrogen starvation in E. coli. The purpose of this review is to highlight some of these new developments.


2021 ◽  
Author(s):  
Blas Chaves-Urbano ◽  
Bárbara Hernando ◽  
Maria J Garcia ◽  
Geoff Macintyre

Selecting the optimal cancer cell line for an experiment can be challenging given the diversity of lines available. Cell lines are often chosen based on their tissue of origin, however, the results of large-scale pan-cancer studies suggest that matching lines based on molecular features may be more appropriate. Existing approaches are available for matching lines based on gene expression, DNA methylation or low resolution DNA copy number features. However, a specific tool for computing similarity based on high resolution genome-wide copy number profiles is lacking. Here, we present CNpare, which identifies similar cell line models based on genome-wide DNA copy number. CNpare compares copy number profiles using four different similarity metrics, quantifies the extent of genome differences between pairs, and facilitates comparison based on copy number signatures. CNpare incorporates a precomputed database of 1,170 human cancer cell line profiles for comparison. In an analysis of separate cultures of 304 cell line pairs, CNpare identified the matched lines in all cases. CNpare provides a powerful solution to the problem of selecting the best cell line models for cancer research, especially in the context of studying chromosomal instability.


2020 ◽  
Author(s):  
Heather S. Deter ◽  
Tahmina Hossain ◽  
Nicholas C. Butzin

SummaryAntibiotic treatment kills a large portion of a population, while a small, tolerant subpopulation survives. Tolerant bacteria disrupt the efficacy of antibiotics and increase the likelihood that a population gains antibiotic resistance, a growing concern. Using a systems biology approach to, we examine how transcriptional networks respond to antibiotic stress to survive and recover from antibiotic treatment. We are the first to apply transcriptional regulatory network (TRN) analysis to antibiotic tolerance in E. coli, by comparing gene expression with and without lethal concentrations of ampicillin and leveraging existing knowledge of transcriptional regulation. TRN analysis shows that changes in gene expression specific to ampicillin treatment are likely caused by specific sigma and transcription factors typically regulated by proteolysis. These results demonstrate that altered activity of specific regulatory proteins cause an active and coordinated transcriptional response that leverages multiple gene systems to survive and recover from ampicillin treatment.


Author(s):  
F. A. Durum ◽  
R. G. Goldman ◽  
T. J. Bolling ◽  
M. F. Miller

CMP-KDO synthetase (CKS) is an enzyme which plays a key role in the synthesis of LPS, an outer membrane component unique to gram negative bacteria. CKS activates KDO to CMP-KDO for incorporation into LPS. The enzyme is normally present in low concentrations (0.02% of total cell protein) which makes it difficult to perform large scale isolation and purification. Recently, the gene for CKS from E. coli was cloned and various recombinant DNA constructs overproducing CKS several thousandfold (unpublished data) were derived. Interestingly, no cytoplasmic inclusions of overproduced CKS were observed by EM (Fig. 1) which is in contrast to other reports of large proteinaceous inclusion bodies in various overproducing recombinant strains. The present immunocytochemical study was undertaken to localize CKS in these cells.Immune labeling conditions were first optimized using a previously described cell-free test system. Briefly, this involves soaking small blocks of polymerized bovine serum albumin in purified CKS antigen and subjecting them to various fixation, embedding and immunochemical conditions.


2019 ◽  
Vol 22 (5) ◽  
pp. 346-354
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Aim and Objective: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity. Materials and Methods: Using our unique double-reporter system, in-house large-scale HTS campaign was conducted for the identification of antibacterial potency of small-molecule compounds. The construction allows us to visually assess the underlying mechanism of action. After the initial HTS and rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were carried out. Results: HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the same strain. In contrast to the parent hit, this compound was more active and selective, and provided a robust IP position. Conclusion: N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the development of novel active and selective antibacterial compounds.


2020 ◽  
Vol 17 (5) ◽  
pp. 716-724
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Background: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. Methods: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. Results: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 μg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. Conclusion: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


Sign in / Sign up

Export Citation Format

Share Document