scholarly journals Epigenetic regulation of hematopoiesis by DNA methylation

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Aniket V Gore ◽  
Brett Athans ◽  
James R Iben ◽  
Kristin Johnson ◽  
Valya Russanova ◽  
...  

During embryonic development, cell type-specific transcription factors promote cell identities, while epigenetic modifications are thought to contribute to maintain these cell fates. Our understanding of how genetic and epigenetic modes of regulation work together to establish and maintain cellular identity is still limited, however. Here, we show that DNA methyltransferase 3bb.1 (dnmt3bb.1) is essential for maintenance of hematopoietic stem and progenitor cell (HSPC) fate as part of an early Notch-runx1-cmyb HSPC specification pathway in the zebrafish. Dnmt3bb.1 is expressed in HSPC downstream from Notch1 and runx1, and loss of Dnmt3bb.1 activity leads to reduced cmyb locus methylation, reduced cmyb expression, and gradual reduction in HSPCs. Ectopic overexpression of dnmt3bb.1 in non-hematopoietic cells is sufficient to methylate the cmyb locus, promote cmyb expression, and promote hematopoietic development. Our results reveal an epigenetic mechanism supporting the maintenance of hematopoietic cell fate via DNA methylation-mediated perdurance of a key transcription factor in HSPCs.

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2407
Author(s):  
Ruicen He ◽  
Arthur Dantas ◽  
Karl Riabowol

Acetylation of histones is a key epigenetic modification involved in transcriptional regulation. The addition of acetyl groups to histone tails generally reduces histone-DNA interactions in the nucleosome leading to increased accessibility for transcription factors and core transcriptional machinery to bind their target sequences. There are approximately 30 histone acetyltransferases and their corresponding complexes, each of which affect the expression of a subset of genes. Because cell identity is determined by gene expression profile, it is unsurprising that the HATs responsible for inducing expression of these genes play a crucial role in determining cell fate. Here, we explore the role of HATs in the maintenance and differentiation of various stem cell types. Several HAT complexes have been characterized to play an important role in activating genes that allow stem cells to self-renew. Knockdown or loss of their activity leads to reduced expression and or differentiation while particular HATs drive differentiation towards specific cell fates. In this study we review functions of the HAT complexes active in pluripotent stem cells, hematopoietic stem cells, muscle satellite cells, mesenchymal stem cells, neural stem cells, and cancer stem cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3459-3459
Author(s):  
Jennifer J. Trowbridge ◽  
Amit U. Sinha ◽  
Scott A. Armstrong ◽  
Stuart H. Orkin

Abstract Abstract 3459 Leukemia stem cells (LSCs) are an attractive target in treatment of many types of blood cancers. There remains an incomplete understanding of the epigenetic mechanisms driving LSC formation and maintenance, and how this compares to the epigenetic regulation of normal hematopoietic stem cells (HSCs). One of the major epigenetic modifications, DNA methylation, is catalyzed by the DNA methyltransferase enzymes Dnmt1, Dnmt3a and Dnmt3b. We observed decreased expression of Dnmt3a and Dnmt3b in LSCs isolated from a model of MLL-AF9-induced acute myeloid leukemia (AML) compared to normal HSCs. In contrast, expression of Dnmt1 was maintained in LSCs compared to HSCs, suggesting that Dnmt1 may have a critical function in the formation and maintenance of LSCs. Supporting this hypothesis, we found that conditional knockout of Dnmt1 fully ablates the development of AML. Furthermore, haploinsufficiency of Dnmt1 (Dnmt1fl/+ Mx-Cre) was sufficient to delay progression of leukemogenesis and impair LSC self-renewal. Strikingly, haploinsufficiency of Dnmt1 did not functionally alter normal hematopoiesis or HSCs, suggesting an enhanced dependence of LSCs on DNA methylation. Mechanistically, we observed that haploinsufficiency of Dnmt1 in LSCs resulted in derepression of genes that had been silenced by MLL-AF9-mediated transformation and marked by bivalent H3K27me3/H3K4me3 chromatin domains. These results suggest that the formation and maintenance of LSCs depends not only upon activation of a leukemogenic program, but also upon silencing of a specific gene signature that is active in HSCs through crosstalk between two epigenetic mechanisms, polycomb-mediated repression and DNA methylation-mediated repression. This silenced gene signature includes known and candidate tumor suppressor genes as well as genes involved in lineage restriction. These studies present evidence that distinct epigenetic regulatory mechanisms are dominant in LSCs compared to HSCs and provide novel gene candidates for targeted reactivation in AML therapy. Disclosures: Armstrong: Epizyme: Consultancy.


Blood ◽  
2021 ◽  
Author(s):  
Dirk Loeffler ◽  
Florin Schneiter ◽  
Weijia Wang ◽  
Arne Wehling ◽  
Tobias Kull ◽  
...  

Understanding human hematopoietic stem cell fate control is important for their improved therapeutic manipulation. Asymmetric cell division, the asymmetric inheritance of factors during division instructing future daughter cell fates, was recently described in mouse blood stem cells. In human blood stem cells, the possible existence of asymmetric cell division remained unclear due to technical challenges in its direct observation. Here, we use long-term quantitative single-cell imaging to show that lysosomes and active mitochondria are asymmetrically inherited in human blood stem cells and that their inheritance is a coordinated, non-random process. Furthermore, multiple additional organelles, including autophagosomes, mitophagosomes, autolysosomes and recycling endosomes show preferential asymmetric co-segregation with lysosomes. Importantly, asymmetric lysosomal inheritance predicts future asymmetric daughter cell cycle length, differentiation and stem cell marker expression, while asymmetric inheritance of active mitochondria correlates with daughter metabolic activity. Hence, human hematopoietic stem cell fates are regulated by asymmetric cell division, with both mechanistic evolutionary conservation and differences to the mouse system.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 65-73 ◽  
Author(s):  
Robert K. Ho

The early lineages of the zebrafish are indeterminate and a single cell labeled before the late blastula period will contribute progeny to a variety of tissues. Therefore, early cell lineages in the zebrafish do not establish future cell fates and early blastomeres must necessarily remain pluripotent. Eventually, after a period of random cell mixing, individual cells do become tissue restricted according to their later position within the blastoderm. The elucidation of a fate map for the zebrafish gastrula (Kimmel et al., 1990), has made it possible to study the processes by which cellular identity is conferred and maintained in the zebrafish. In this chapter, I describe single cell transplantation experiments designed to test for the irreversible restriction or ‘commitment’ of embryonic blastomeres in the zebrafish embryo. These experiments support the hypothesis that cell fate in the vertebrate embryo is determined by cell position. Work on the spadetail mutation will also be reviewed; this mutation causes a subset of mesodermal precursors to mismigrate during gastrulation thereby leading to a change in their eventual cell identity.


2011 ◽  
Vol 286 (22) ◽  
pp. 19478-19488 ◽  
Author(s):  
Linda Nocchi ◽  
Marco Tomasetti ◽  
Monica Amati ◽  
Jiri Neuzil ◽  
Lory Santarelli ◽  
...  

Malignant mesothelioma (MM) is often complicated by thromboembolic episodes, with thrombomodulin (TM) playing a critical role in the anticoagulant process. Heterogeneous expression of TM has been observed in cancer, and low or no TM expression in cancer cells is associated with poor prognosis. In this study, we analyzed TM expression in biopsies of MM patients and compared them with normal mesothelial tissue. The role of DNA methylation-associated gene silencing in TM expression was investigated. To evaluate poly(ADP-ribose) polymerase-1 (PARP1) as responsible for gene promoter epigenetic modifications, nonmalignant mesothelial cells (Met-5A) and MM cells (H28) were silenced for PARP1 and the DNA methylation/acetylation-associated TM expression evaluated. A correlation between low TM expression and high level of TM promoter methylation was found in MM biopsies. Low expression of TM was restored in MM cells by their treatment with 5-aza-2′-deoxycytidine and, to a lesser extent, with trichostatin, whereas the epigenetic agents did not affect TM expression in Met-5A cells. Silencing of PARP1 resulted in a strong down-regulation of TM expression in Met-5A cells, while restoring TM expression in H28 cells. PARP1 silencing induced TM promoter methylation in Met-5A cells and demethylation in MM cells, and this was paralleled by corresponding changes in the DNA methyltransferase activity. We propose that methylation of the TM promoter is responsible for silencing of TM expression in MM tissue, a process that is regulated by PARP1.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 211-211
Author(s):  
Amber Hogart ◽  
Jens Lichtenberg ◽  
Subramanian Ajay ◽  
Elliott Margulies ◽  
David M. Bodine

Abstract Abstract 211 The hematopoietic system is ideal for the study of epigenetic changes in primary cells because hematopoietic cells representing distinct stages of hematopoiesis can be enriched and isolated by differences in surface marker expression. DNA methylation is an essential epigenetic mark that is required for normal development. Conditional knockout of the DNA methyltransferase enzymes in the mouse hematopoietic compartment have revealed that methylation is critical for long-term renewal and lineage differentiation of hematopoietic stem cells (Broske et al 2009, Trowbridge el al 2009). To better understand the role of DNA methylation in self-renewal and differentiation of hematopoietic cells, we characterized genome-wide DNA methylation in primary cells representing three distinct stages of hematopoiesis. We isolated mouse hematopoietic stem cells (HSC; Lin- Sca-1+ c-kit+), common myeloid progenitor cells (CMP; Lin- Sca-1- c-kit+), and erythroblasts (ERY; CD71+ Ter119+). Methyl Binding Domain Protein 2 (MBD2) is an endogenous reader of DNA methylation that recognizes DNA with a high concentration of methylated CpG residues. Recombinant MBD2 enrichment of DNA followed by massively-parallel sequencing was used to map and compare genome-wide DNA methylation patterns in HSC, CMP and ERY. Two biological replicates were sequenced for each cell type with total read counts ranging from 32,309,435–46,763,977. Model-based analysis of ChIP Seq (MACS) with a significance cutoff of p<10−5 was used to determine statistically significant peaks of methylation in each replicate. Globally, the number of methylation peaks was highest in HSC (85,797peaks), lower in CMP (50,638 peaks), and lowest in ERY (27,839 peaks). Comparison of the peaks in HSC, CMP and ERY revealed that only 2% of the peaks in CMP or ERY are absent in HSC indicating that the vast majority of methylation in HSC is lost during differentiation. Comparison of methylation with genomic features revealed that CpG islands associated with promoters are hypomethylated, while many non-promoter CpG islands are methylated. Furthermore, methylation of non-promoter associated CpG islands occurs infrequently in cell-type specific peaks but is more abundant in common methylation peaks. When the DNA methylation patterns were compared to mRNA expression, we found that as expected, proximal promoter sequences of expressed genes were hypomethylated in all three cell types, while methylation in the gene body positively correlated with gene expression in HSC and CMP. Utilizing de novo motif discovery we found a subset of transcription factor consensus binding motifs that were overrepresented in methylated sequences. Motifs for several ETS transcription factors, including GABPalpha and ELF1 were found to be overrepresented in cell-type specific as well as common methylated regions. Other transcription factor consensus sites, such as the NFAT factors involved in T-cell activation, were specifically overrepresented in the methylated promoter regions of CMP and ERY. Comparison of our methylation data with the occupancy of hematopoietic transcription factors in the HPC7 cell line, which is similar to CMP (Wilson et al 2010), revealed a significant anti-correlation between DNA methylation and the binding of Fli1, Lmo2, Lyl1, Runx1, and Scl. Our genome-wide survey provides new insights into the role of DNA methylation in hematopoiesis. Firstly, the methylation of CpG islands is associated with the most primitive hematopoietic cells and is unlikely to drive hematopoietic differentiation. We feel that the elevated genome-wide DNA methylation in HSC compared to CMP and ERY, combined with the positive association between gene body methylation and gene expression demonstrates that DNA methylation is a mark of cellular plasticity in HSC. Finally, the finding that transcription factor binding sites are over represented in the methylated sequences of the genome leads us to conclude that DNA methylation modulates key hematopoietic transcription factor programs that regulate hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 27 (4) ◽  
pp. 225-236 ◽  
Author(s):  
Simona Salati ◽  
Zelia Prudente ◽  
Elena Genovese ◽  
Valentina Pennucci ◽  
Sebastiano Rontauroli ◽  
...  

2017 ◽  
Author(s):  
Mira Jeong ◽  
Xingfan Huang ◽  
Xiaotian Zhang ◽  
Jianzhong Su ◽  
Muhammad S. Shamim ◽  
...  

AbstractHigher order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we found that large (~10kb) DNA methylation nadirs can form long loops connecting anchor loci that may be dozens of megabases apart, as well as interchromosomal links. The interacting loci comprise ~3.5Mb of the human genome. The data are more consistent with the formation of these loops by phase separation of the interacting loci to form a genomic subcompartment, rather than with CTCF-mediated extrusion. Interestingly, unlike previously characterized genomic subcompartments, this subcompartment is only present in particular cell types, such as stem and progenitor cells. Further, we identify one particular loop anchor that is functionally associated with maintenance of the hematopoietic stem cell state. Our work reveals that H3K27me3-marked large DNA methylation nadirs represent a novel set of very long-range loops and links associated with cellular identity.SummaryHi-C and DNA methylation analyses reveal novel chromatin loops between distant sites implicated in stem and progenitor cell function.


2018 ◽  
Vol 1 (6) ◽  
pp. e201800153 ◽  
Author(s):  
Tanja Božić ◽  
Joana Frobel ◽  
Annamarija Raic ◽  
Fabio Ticconi ◽  
Chao-Chung Kuo ◽  
...  

De novo DNA methyltransferase 3A (DNMT3A) plays pivotal roles in hematopoietic differentiation. In this study, we followed the hypothesis that alternative splicing ofDNMT3Ahas characteristic epigenetic and functional sequels. SpecificDNMT3Atranscripts were either down-regulated or overexpressed in human hematopoietic stem and progenitor cells, and this resulted in complementary and transcript-specific DNA methylation and gene expression changes. Functional analysis indicated that, particularly, transcript 2 (coding for DNMT3A2) activates proliferation and induces loss of a primitive immunophenotype, whereas transcript 4 interferes with colony formation of the erythroid lineage. Notably, in acute myeloid leukemia expression of transcript 2 correlates with its in vitro DNA methylation and gene expression signatures and is associated with overall survival, indicating thatDNMT3Avariants also affect malignancies. Our results demonstrate that specificDNMT3Avariants have a distinct epigenetic and functional impact. Particularly, DNMT3A2 triggers hematopoietic differentiation and the corresponding signatures are reflected in acute myeloid leukemia.


2020 ◽  
Author(s):  
yuhua sun ◽  
Xixia Peng ◽  
Gang Feng

Early embryogenesis requires the coordinated development of cardiovascular and hematopoietic lineages. However, the underlying cellular and genetic mechanisms are poorly understood. Here, we show that Rnf2, the core enzymatic component of Polycomb repressive complex 1 (PRC1), plays an important role in the control of cardiovascular and hematopoietic development and differentiation via suppressing the master hematoendothelial progenitor genes in zebrafish. In the absence of Rnf2, a group of transcription factor (TF) genes crucial for hematoendothelial specification such as etv2, gata2, lmo2 and tal1 are significantly up-regulated, which causes an expansion of hematopoietic and endothelial progenitors at the expense of myocardial differentiation, resulting in severe defects in both cardiogenesis and hematopoiesis. Although the number of hematopoietic stem cells (HSCs) is increased, both primitive and definitive wave of hematopoiesis are severely compromised in rnf2 mutant embryos, suggesting that Rnf2 is required for differentiation of blood progenitor cells. Combined ChIP-seq and RNA-seq analysis shows that Rnf2 directly binds to key hematoendothelial progenitor genes and represses its expression. We further show that Rnf2-mediated gene repression depends on its H2Aub1 catalytic activity. We propose that PRC1/Rnf2-mediated epigenetic mechanism plays a key role in coordinated development of cardiovascular and hematopoietic lineages by repressing key hematoendothelial progenitor genes.


Sign in / Sign up

Export Citation Format

Share Document