scholarly journals A Cell type-specific Class of Chromatin Loops Anchored at Large DNA Methylation Nadirs

2017 ◽  
Author(s):  
Mira Jeong ◽  
Xingfan Huang ◽  
Xiaotian Zhang ◽  
Jianzhong Su ◽  
Muhammad S. Shamim ◽  
...  

AbstractHigher order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we found that large (~10kb) DNA methylation nadirs can form long loops connecting anchor loci that may be dozens of megabases apart, as well as interchromosomal links. The interacting loci comprise ~3.5Mb of the human genome. The data are more consistent with the formation of these loops by phase separation of the interacting loci to form a genomic subcompartment, rather than with CTCF-mediated extrusion. Interestingly, unlike previously characterized genomic subcompartments, this subcompartment is only present in particular cell types, such as stem and progenitor cells. Further, we identify one particular loop anchor that is functionally associated with maintenance of the hematopoietic stem cell state. Our work reveals that H3K27me3-marked large DNA methylation nadirs represent a novel set of very long-range loops and links associated with cellular identity.SummaryHi-C and DNA methylation analyses reveal novel chromatin loops between distant sites implicated in stem and progenitor cell function.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 534-534
Author(s):  
Mira Jeong ◽  
Xiangfan Huang ◽  
Xiaotian Zhang ◽  
Jianzhong Su ◽  
Muhammad S Shamim ◽  
...  

Abstract Higher order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. In order to understand how the DNA methylation is connected with nuclear architecture and can vary between cell types and during cell differentiation, we began to explore the 3D architecture of human hematopoietic stem and progenitor cells (HSPCs) by performing in situ Hi-C experiments at 5kb resolution. We found that large (~10kb) DNA methylation canyons can form long loops connecting anchor loci that may be dozens of megabases apart. These canyons also can form interchromosomal links (Fig.1a and 1b). We further confirmed these long-range interactions by performing 3D-FISH using two color fluorescent labeled probes that spanned the HOXA locus loop anchor (green) and the SP8 locus loop anchor (red), which are ~7MB apart (Fig. 1c). In order to begin to investigate mechanisms that may regulate these long loops and how they relate to commonly studied loops that are mediated by CTCF-extrusion, we examined their properties systematically. Interestingly, the anchors of long loops exhibited minimal enrichment for CTCF (1.04-fold), and, even when CTCF was bound, they did not obey the convergent rule. The data suggest these loops are formed by phase separation of the interacting loci to form a genomic subcompartment, rather than by CTCF-mediated extrusion. Next, we sought to determine whether other features correlated with these long loops. By aligning DNA methylation profiles with the Hi-C data, we observed that anchors often corresponded to regions of very low DNA methylation, and thus sought to analyze the relationship in detail. We found that the anchor position of the long loops had lower average DNA methylation levels than standard loop anchors and very often overlapped with DNA methylation canyons. Canyons are typically decorated with either active or repressive histone marks. We considered whether a particular group of canyons was associated with the long loops. Our findings further indicate that repressed regions marked by the polycomb-mediated histone modification H3K27me3 at DNA methylation canyons generally mediate the formation of canyon loops. Next, we considered whether the long loops associated with repressive grand canyons that we had annotated in HSPCs were present in other cell types. Using Aggregate Peak Analysis (APA), a computational strategy in which the Hi-C submatrices from the vicinity of multiple putative loops are superimposed, we examined 19 human cell types and 10 murine cell types in which loop-resolution Hi-C maps are available. Interestingly, unlike previously characterized genomic subcompartments, these long-range loops are only present in stem and progenitor cells, but not in differentiated cell types, such as T cells and erythroid progenitors (Fig. 1d). Further, we identified one particular loop anchor that lay at the anchor of a long loop and contained no apparent genes ("geneless" canyon, or "GLS"). The GLS harboring this anchor is 17 kb long, lies 1.4 Mb upstream of the HOXA1 gene, and forms long loops with a 28 kb grand canyon in the HOXA region. In order to understand the role of the GLS region in hematopoietic stem cells (HSCs), we deleted the GLS in HSPCs using Cas9-mediated editing and assayed the edited cells for their ability to form colonies. Strikingly, after deleting the GLS, the number of colonies and their size was greatly reduced in edited cells compared to control experiments using either random guide RNAs or electroporation only (Fig. 1e). After ex vivo culture, the overwhelming majority of GLS-knock out HSPCs acquired the marker CD38, indicating that they were differentiating. Similarly, HOXA gene expression, an indicator of HSPC function, was greatly diminished after GLS deletion compared to control cells. These data indicate that the GLS identified in our study is functionally associated with maintenance of the HSC state. Overall, our work reveals long-range interactions between H3K27me3-marked DNA methylation canyons comprising a novel microcompartment associated with cellular identity. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanyu Zhang ◽  
Ruoyi Cai ◽  
James Dai ◽  
Wei Sun

AbstractWe introduce a new computational method named EMeth to estimate cell type proportions using DNA methylation data. EMeth is a reference-based method that requires cell type-specific DNA methylation data from relevant cell types. EMeth improves on the existing reference-based methods by detecting the CpGs whose DNA methylation are inconsistent with the deconvolution model and reducing their contributions to cell type decomposition. Another novel feature of EMeth is that it allows a cell type with known proportions but unknown reference and estimates its methylation. This is motivated by the case of studying methylation in tumor cells while bulk tumor samples include tumor cells as well as other cell types such as infiltrating immune cells, and tumor cell proportion can be estimated by copy number data. We demonstrate that EMeth delivers more accurate estimates of cell type proportions than several other methods using simulated data and in silico mixtures. Applications in cancer studies show that the proportions of T regulatory cells estimated by DNA methylation have expected associations with mutation load and survival time, while the estimates from gene expression miss such associations.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3459-3459
Author(s):  
Jennifer J. Trowbridge ◽  
Amit U. Sinha ◽  
Scott A. Armstrong ◽  
Stuart H. Orkin

Abstract Abstract 3459 Leukemia stem cells (LSCs) are an attractive target in treatment of many types of blood cancers. There remains an incomplete understanding of the epigenetic mechanisms driving LSC formation and maintenance, and how this compares to the epigenetic regulation of normal hematopoietic stem cells (HSCs). One of the major epigenetic modifications, DNA methylation, is catalyzed by the DNA methyltransferase enzymes Dnmt1, Dnmt3a and Dnmt3b. We observed decreased expression of Dnmt3a and Dnmt3b in LSCs isolated from a model of MLL-AF9-induced acute myeloid leukemia (AML) compared to normal HSCs. In contrast, expression of Dnmt1 was maintained in LSCs compared to HSCs, suggesting that Dnmt1 may have a critical function in the formation and maintenance of LSCs. Supporting this hypothesis, we found that conditional knockout of Dnmt1 fully ablates the development of AML. Furthermore, haploinsufficiency of Dnmt1 (Dnmt1fl/+ Mx-Cre) was sufficient to delay progression of leukemogenesis and impair LSC self-renewal. Strikingly, haploinsufficiency of Dnmt1 did not functionally alter normal hematopoiesis or HSCs, suggesting an enhanced dependence of LSCs on DNA methylation. Mechanistically, we observed that haploinsufficiency of Dnmt1 in LSCs resulted in derepression of genes that had been silenced by MLL-AF9-mediated transformation and marked by bivalent H3K27me3/H3K4me3 chromatin domains. These results suggest that the formation and maintenance of LSCs depends not only upon activation of a leukemogenic program, but also upon silencing of a specific gene signature that is active in HSCs through crosstalk between two epigenetic mechanisms, polycomb-mediated repression and DNA methylation-mediated repression. This silenced gene signature includes known and candidate tumor suppressor genes as well as genes involved in lineage restriction. These studies present evidence that distinct epigenetic regulatory mechanisms are dominant in LSCs compared to HSCs and provide novel gene candidates for targeted reactivation in AML therapy. Disclosures: Armstrong: Epizyme: Consultancy.


2020 ◽  
Author(s):  
Manuela Wuelling ◽  
Christoph Neu ◽  
Andrea M. Thiesen ◽  
Simo Kitanovski ◽  
Yingying Cao ◽  
...  

AbstractEpigenetic modifications play critical roles in regulating cell lineage differentiation, but the epigenetic mechanisms guiding specific differentiation steps within a cell lineage have rarely been investigated. To decipher such mechanisms, we used the defined transition from proliferating (PC) into hypertrophic chondrocytes (HC) during endochondral ossification as a model. We established a map of activating and repressive histone modifications for each cell type. ChromHMM state transition analysis and Pareto-based integration of differential levels of mRNA and epigenetic marks revealed that differentiation associated gene repression is initiated by the addition of H3K27me3 to promoters still carrying substantial levels of activating marks. Moreover, the integrative analysis identified genes specifically expressed in cells undergoing the transition into hypertrophy.Investigation of enhancer profiles detected surprising differences in enhancer number, location, and transcription factor binding sites between the two closely related cell types. Furthermore, cell type-specific upregulation of gene expression was associated with a shift from low to high H3K27ac decoration. Pathway analysis identified PC-specific enhancers associated with chondrogenic genes, while HC-specific enhancers mainly control metabolic pathways linking epigenetic signature to biological functions.


2017 ◽  
Author(s):  
Meng Amy Li ◽  
Paulo P Amaral ◽  
Priscilla Cheung ◽  
Jan H Bergmann ◽  
Masaki Kinoshita ◽  
...  

2018 ◽  
Author(s):  
Meaghan J Jones ◽  
Louie Dinh ◽  
Hamid Reza Razzaghian ◽  
Olivia de Goede ◽  
Julia L MacIsaac ◽  
...  

AbstractBackgroundDNA methylation profiling of peripheral blood leukocytes has many research applications, and characterizing the changes in DNA methylation of specific white blood cell types between newborn and adult could add insight into the maturation of the immune system. As a consequence of developmental changes, DNA methylation profiles derived from adult white blood cells are poor references for prediction of cord blood cell types from DNA methylation data. We thus examined cell-type specific differences in DNA methylation in leukocyte subsets between cord and adult blood, and assessed the impact of these differences on prediction of cell types in cord blood.ResultsThough all cell types showed differences between cord and adult blood, some specific patterns stood out that reflected how the immune system changes after birth. In cord blood, lymphoid cells showed less variability than in adult, potentially demonstrating their naïve status. In fact, cord CD4 and CD8 T cells were so similar that genetic effects on DNA methylation were greater than cell type effects in our analysis, and CD8 T cell frequencies remained difficult to predict, even after optimizing the library used for cord blood composition estimation. Myeloid cells showed fewer changes between cord and adult and also less variability, with monocytes showing the fewest sites of DNA methylation change between cord and adult. Finally, including nucleated red blood cells in the reference library was necessary for accurate cell type predictions in cord blood.ConclusionChanges in DNA methylation with age were highly cell type specific, and those differences paralleled what is known about the maturation of the postnatal immune system.


Blood ◽  
2020 ◽  
Vol 136 (20) ◽  
pp. 2296-2307 ◽  
Author(s):  
Konstantinos D. Kokkaliaris ◽  
Leo Kunz ◽  
Nina Cabezas-Wallscheid ◽  
Constantina Christodoulou ◽  
Simon Renders ◽  
...  

Abstract The exact localization of hematopoietic stem cells (HSCs) in their native bone marrow (BM) microenvironment remains controversial, because multiple cell types have been reported to physically associate with HSCs. In this study, we comprehensively quantified HSC localization with up to 4 simultaneous (9 total) BM components in 152 full-bone sections from different bone types and 3 HSC reporter lines. We found adult femoral α-catulin-GFP+ or Mds1GFP/+Flt3Cre HSCs proximal to sinusoids, Cxcl12 stroma, megakaryocytes, and different combinations of those populations, but not proximal to bone, adipocyte, periarteriolar, or Schwann cells. Despite microanatomical differences in femurs and sterna, their adult α-catulin-GFP+ HSCs had similar distributions. Importantly, their microenvironmental localizations were not different from those of random dots, reflecting the relative abundance of imaged BM populations rather than active enrichment. Despite their functional heterogeneity, dormant label-retaining (LR) and non-LR hematopoietic stem and progenitor cells both had indistinguishable localization from α-catulin-GFP+ HSCs. In contrast, cycling juvenile BM HSCs preferentially located close to Cxcl12 stroma and farther from sinusoids/megakaryocytes. We expect our study to help resolve existing confusion regarding the exact localization of different HSC types, their physical association with described BM populations, and their tissue-wide combinations.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


Blood ◽  
2020 ◽  
Vol 135 (23) ◽  
pp. 2049-2058 ◽  
Author(s):  
Christine R. Keenan ◽  
Nadia Iannarella ◽  
Gaetano Naselli ◽  
Naiara G. Bediaga ◽  
Timothy M. Johanson ◽  
...  

Abstract Loss of heterochromatin has been proposed as a universal mechanism of aging across different species and cell types. However, a comprehensive analysis of hematopoietic changes caused by heterochromatin loss is lacking. Moreover, there is conflict in the literature around the role of the major heterochromatic histone methyltransferase Suv39h1 in the aging process. Here, we use individual and dual deletion of Suv39h1 and Suv39h2 enzymes to examine the causal role of heterochromatin loss in hematopoietic cell development. Loss of neither Suv39h1 nor Suv39h2 individually had any effect on hematopoietic stem cell function or the development of mature lymphoid or myeloid lineages. However, deletion of both enzymes resulted in characteristic changes associated with aging such as reduced hematopoietic stem cell function, thymic involution and decreased lymphoid output with a skewing toward myeloid development, and increased memory T cells at the expense of naive T cells. These cellular changes were accompanied by molecular changes consistent with aging, including alterations in nuclear shape and increased nucleolar size. Together, our results indicate that the hematopoietic system has a remarkable tolerance for major disruptions in chromatin structure and reveal a role for Suv39h2 in depositing sufficient H3K9me3 to protect the entire hematopoietic system from changes associated with premature aging.


Author(s):  
Xiangyu Luo ◽  
Joel Schwartz ◽  
Andrea Baccarelli ◽  
Zhonghua Liu

Abstract Epigenome-wide mediation analysis aims to identify DNA methylation CpG sites that mediate the causal effects of genetic/environmental exposures on health outcomes. However, DNA methylations in the peripheral blood tissues are usually measured at the bulk level based on a heterogeneous population of white blood cells. Using the bulk level DNA methylation data in mediation analysis might cause confounding bias and reduce study power. Therefore, it is crucial to get fine-grained results by detecting mediation CpG sites in a cell-type-specific way. However, there is a lack of methods and software to achieve this goal. We propose a novel method (Mediation In a Cell-type-Specific fashion, MICS) to identify cell-type-specific mediation effects in genome-wide epigenetic studies using only the bulk-level DNA methylation data. MICS follows the standard mediation analysis paradigm and consists of three key steps. In step1, we assess the exposure-mediator association for each cell type; in step 2, we assess the mediator-outcome association for each cell type; in step 3, we combine the cell-type-specific exposure-mediator and mediator-outcome associations using a multiple testing procedure named MultiMed [Sampson JN, Boca SM, Moore SC, et al. FWER and FDR control when testing multiple mediators. Bioinformatics 2018;34:2418–24] to identify significant CpGs with cell-type-specific mediation effects. We conduct simulation studies to demonstrate that our method has correct FDR control. We also apply the MICS procedure to the Normative Aging Study and identify nine DNA methylation CpG sites in the lymphocytes that might mediate the effect of cigarette smoking on the lung function.


Sign in / Sign up

Export Citation Format

Share Document