scholarly journals Entomopathogenic nematodes increase predation success by inducing cadaver volatiles that attract healthy herbivores

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Xi Zhang ◽  
Ricardo AR Machado ◽  
Cong Van Doan ◽  
Carla CM Arce ◽  
Lingfei Hu ◽  
...  

Herbivore natural enemies protect plants by regulating herbivore populations. Whether they can alter the behavior of their prey to increase predation success is unknown. We investigate if and how infection by the entomopathogenic nematode Heterorhabditis bacteriophora changes the behavior of healthy larvae of the western corn rootworm (Diabrotica virgifera), a major pest of maize. We found that nematode-infected rootworm cadavers are attractive to rootworm larvae, and that this behavior increases nematode reproductive success. Nematode-infected rootworms release distinct volatile bouquets, including the unusual volatile butylated hydroxytoluene (BHT). BHT alone attracts rootworms, and increases nematode reproductive success. A screen of different nematode and herbivore species shows that attraction of healthy hosts to nematode-infected cadavers is widespread and likely involves species-specific volatile cues. This study reveals a new facet of the biology of herbivore natural enemies that boosts their predation success by increasing the probability of host encounters.

2018 ◽  
Author(s):  
Xi Zhang ◽  
Ricardo A. R. Machado ◽  
Cong Van Doan ◽  
Carla C. M. Arce ◽  
Lingfei Hu ◽  
...  

ABSTRACTHerbivore natural enemies, including predators, parasitoids and parasites, protect plants by regulating herbivore populations. Some parasites can increase their transmission efficiency by manipulating host behavior. Whether natural enemies can manipulate herbivore behavior to increase top-down control, however, is unknown. Here, we investigate if and how the entomopathogenic nematode Heterorhabditis bacteriophora, an important biocontrol agent, modulates the behavior of the western corn rootworm, Diabrotica virgifera virgifera, a major maize pest, and how these behavioral changes affect the capacity of the nematode to control the rootworm. We found that healthy rootworm larvae are attracted to nematode-infected cadavers shortly before the emergence of the next generation of nematodes. Nematode-infected rootworms release distinct volatile bouquets, including butylated hydroxytoluene (BHT), which attracts rootworms to infected cadavers. In a soil setting, BHT attracts rootworms and reduces nematode resistance, resulting in increased infection rates and rootworm mortality as well as increased nematode reproductive success. Five out of seven tested insect species were found to be attracted to nematode-infected conspecifics, suggesting that attraction of healthy hosts to nematode-infected cadavers is widespread. This study reveals a new facet of the biology of entomopathogenic nematodes that increases their capacity to control a major root pest by increasing the probability of host encounters.


2020 ◽  
Author(s):  
Cong Van Doan ◽  
Marc Pfander ◽  
Anouk Guyer ◽  
Xi Zhang ◽  
Corina Maurer ◽  
...  

ABSTRACTClimate change will profoundly alter the physiology and ecology of plants, insect herbivores and their natural enemies, resulting in strong effects on multitrophic interactions. Yet, manipulative studies that investigate the direct combined impacts of changes in CO2, temperature, and precipitation on this group of organisms remain rare. Here, we assessed how three day exposure to elevated CO2, increased temperature, and decreased precipitation affect the performance and predation success on species from four major groups of natural enemies of insect herbivores: an entomopathogenic nematode, a wolf spider, a ladybug and a parasitoid wasp. Future climatic conditions (RCP 8.5), entailing a 28% decrease in precipitation, a 3.4°C raise in temperature and a 400 ppm increase in CO2 levels, slightly reduced the survival of entomopathogenic nematodes, but had no effect on the survival of other species. Predation success was not negatively affected in any of the tested species, but was even increased for wolf spiders and entomopathogenic nematodes. Factorial manipulation of climate variables revealed a positive effect of reduced soil moisture on nematode infectivity, but not of increased temperature or elevated CO2. These results suggest that natural enemies of herbivores are well adapted to short term changes in climatic conditions and may not suffer from direct negative effects of future climates. These findings provide mechanistic insights that will inform future efforts to disentangle the complex interplay of biotic and abiotic factors that drive climate-dependent changes in multitrophic interaction networks.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Hosam M. K. H. El-Gepaly

AbstractSorghum panicles offer a very rich microenvironment for many insect pest species and their natural enemies. Thirty arthropod species belonging to 28 families, pertaining to 9 orders were obtained from sorghum panicles planted in Sohag Governorate, Egypt, during the 3 successive seasons of 2016–2018. Out of these species were 14 pests, 16 predators, and 3 parasitoids. Lepidopteran and hemipteran pests were the most dominant species-infested sorghum-panicles during the mature stages of the panicles. Three microlepidopteran pests, the noctuid, Eublemma (Autoba) gayneri (Roth.); the pyralid, Cryptoblabes gnidiella Millière, and the cosmopterigid, Pyroderces simplex Walsingham, were recorded as major pest species infesting sorghum panicles in Sohag Governorate. The dipteran parasitoid species, Nemorilla floralis (Fallen) (Tachinidae) emerged from the pupae of the E. gayneri and C. gnidiella, while the hymenopteran parasitoid, Brachymeria aegyptiaca (Chalcididae) was obtained from the pupae of all the studied microlepidopteran pests. Spiders, coccinellids, and Orius spp. were the dominant predators collected form panicles. Post-harvest, larvae, and pupae of lepidopteran pests, especially P. simplex recorded (147, 96, and 79 larvae) and (47, 30, and 73 pupae)/10 panicles in 2016, 2017, and 2018 seasons, respectively.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 74
Author(s):  
Xiao-wei Li ◽  
Xin-xin Lu ◽  
Zhi-jun Zhang ◽  
Jun Huang ◽  
Jin-ming Zhang ◽  
...  

Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control.


Genome ◽  
1998 ◽  
Vol 41 (2) ◽  
pp. 148-153 ◽  
Author(s):  
Monique Abadon ◽  
Eric Grenier ◽  
Christian Laumond ◽  
Pierre Abad

An AluI satellite DNA family has been cloned from the entomopathogenic nematode Heterorhabditis indicus. This repeated sequence appears to be an unusually abundant satellite DNA, since it constitutes about 45% of the H. indicus genome. The consensus sequence is 174 nucleotides long and has an A + T content of 56%, with the presence of direct and inverted repeat clusters. DNA sequence data reveal that monomers are quite homogeneous. Such homogeneity suggests that some mechanism is acting to maintain the homogeneity of this satellite DNA, despite its abundance, or that this repeated sequence could have appeared recently in the genome of H. indicus. Hybridization analysis of genomic DNAs from different Heterorhabditis species shows that this satellite DNA sequence is specific to the H. indicus genome. Considering the species specificity and the high copy number of this AluI satellite DNA sequence, it could provide a rapid and powerful tool for identifying H. indicus strains.Key words: AluI repeated DNA, tandem repeats, species-specific sequence, nucleotide sequence analysis.


2011 ◽  
Vol 35 (6) ◽  
pp. 1149-1156 ◽  
Author(s):  
Viviane Santos ◽  
Alcides Moino Junior ◽  
Vanessa Andaló ◽  
Camila Costa Moreira ◽  
Ricardo Alves de Olinda

Entomopathogenic nematodes (EPNs) are used in biological control of soil insects and show promise in the control of D. speciosa. The objective of this work was to evaluate the potential of native and exotic entomopathogenic nematode isolates in the control of D. speciosa under laboratory and greenhouse conditions. Results showed that all of EPNs caused larval mortality. The most virulent were Heterorhabditis sp. RSC01 (94%), Steinernema glaseri (84%), Heterorhabditis sp. JPM04 (82%) and Heterorhabditis amazonensis RSC05 (78%). There was no effect of the Heterorhabditis sp. RSC01 and S. glaseri isolates on eggs. The maximum mortality of D. speciosa larvae by Heterorhabditis sp. RSC01 was observed at a concentration of 300 IJ/ insect, while by S. glaseri observed the highest mortality at the concentration of 200 IJ/ insect. The Heterorhabditis sp. RSC01 isolate caused over 80% pupal mortality at a concentration of 250 IJ/insect. The virulence of Heterorhabditis sp. RSC01 and S. glaseri was affected by temperature. The Heterorhabditis sp. RSC01 isolate caused reduction in larva survival under greenhouse conditions at all of the tested concentrations and there was no difference in mortality among different concentrations of infectid juveniles.


Nematology ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Chau N. Nguyen ◽  
Anh T. Do ◽  
Phap Q. Trinh ◽  
Phuc K. Hoang

Summary The virulence and efficacy of two species of entomopathogenic nematodes, Steinernema sp. (strain PQ16) and Heterorhabditis indica (strain KT3987), against nymphs of the coffee cicada, Dundubia nagarasingna, was evaluated under laboratory and glasshouse conditions. The highest mortality rates of coffee cicada nymphs caused by these two nematode strains were 93.5 and 100%, respectively, at an inoculation dose of 600 infective juveniles (IJ) nymph−1. The virulence (LC50) was established as 137.5 IJ and 149.1 IJ for strains S-PQ16 and H-KT3987, respectively. The highest IJ yields of these nematode strains were 66 × 103 IJ (for S-PQ16) and 134.4 × 103 IJ (for H-KT3987) at a dose of 500 IJ nymph−1. The efficacies of the two nematode strains to coffee cicadas at treated dose of 60 × 103 IJ pot−1 were 84.4 and 88.9% after 30 days, higher than the efficacies at treated dose of 40 × 103 IJ pot−1. The number of IJ in 250 ml of soil at 10, 20 and 30 days after treatment, increased from 0.38 × 103 to 4.80 × 103 IJ in soil treated with a dose of 40 × 103 IJ and from 0.66 × 103 to 5.02 × 103 IJ in soil treated with a dose of 60 × 103 IJ (for S-PQ16). Similarly, for H-KT3987 the number of IJ increased from 0.43 × 103 to 8.99 × 103 IJ and from 0.62 × 103 to 9.64 × 103 IJ, at the respective doses. Based on results of a pot trial from glasshouse modelling, an IJ application dosage for biological control of coffee cicada nymphs in coffee plantations was proposed.


Genome ◽  
1998 ◽  
Vol 41 (2) ◽  
pp. 148-153
Author(s):  
Monique Abadon ◽  
Eric Grenier ◽  
Christian Laumond ◽  
Pierre Abad

2019 ◽  
Vol 138 ◽  
pp. 104050
Author(s):  
Anna Garriga ◽  
Ana Morton ◽  
Daniel García-López ◽  
Fernando García-del-Pino

2020 ◽  
Vol 21 (2) ◽  
pp. 580 ◽  
Author(s):  
Marcin Skowronek ◽  
Ewa Sajnaga ◽  
Małgorzata Pleszczyńska ◽  
Waldemar Kazimierczak ◽  
Magdalena Lis ◽  
...  

The mechanisms of action of the complex including entomopathogenic nematodes of the genera Steinernema and Heterorhabditis and their mutualistic partners, i.e., bacteria Xenorhabdus and Photorhabdus, have been well explained, and the nematodes have been commercialized as biological control agents against many soil insect pests. However, little is known regarding the nature of the relationships between these bacteria and the gut microbiota of infected insects. In the present study, 900 bacterial isolates that were obtained from the midgut samples of Melolontha melolontha larvae were screened for their antagonistic activity against the selected species of the genera Xenorhabdus and Photorhabdus. Twelve strains exhibited significant antibacterial activity in the applied tests. They were identified based on 16S rRNA and rpoB, rpoD, or recA gene sequences as Pseudomonas chlororaphis, Citrobacter murliniae, Acinetobacter calcoaceticus, Chryseobacterium lathyri, Chryseobacterium sp., Serratia liquefaciens, and Serratia sp. The culture filtrate of the isolate P. chlororaphis MMC3 L3 04 exerted the strongest inhibitory effect on the tested bacteria. The results of the preliminary study that are presented here, which focused on interactions between the insect gut microbiota and mutualistic bacteria of entomopathogenic nematodes, show that bacteria inhabiting the gut of insects might play a key role in insect resistance to entomopathogenic nematode pressure.


Sign in / Sign up

Export Citation Format

Share Document