scholarly journals Variable prediction accuracy of polygenic scores within an ancestry group

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Hakhamanesh Mostafavi ◽  
Arbel Harpak ◽  
Ipsita Agarwal ◽  
Dalton Conley ◽  
Jonathan K Pritchard ◽  
...  

Fields as diverse as human genetics and sociology are increasingly using polygenic scores based on genome-wide association studies (GWAS) for phenotypic prediction. However, recent work has shown that polygenic scores have limited portability across groups of different genetic ancestries, restricting the contexts in which they can be used reliably and potentially creating serious inequities in future clinical applications. Using the UK Biobank data, we demonstrate that even within a single ancestry group (i.e., when there are negligible differences in linkage disequilibrium or in causal alleles frequencies), the prediction accuracy of polygenic scores can depend on characteristics such as the socio-economic status, age or sex of the individuals in which the GWAS and the prediction were conducted, as well as on the GWAS design. Our findings highlight both the complexities of interpreting polygenic scores and underappreciated obstacles to their broad use.

2019 ◽  
Author(s):  
Hakhamanesh Mostafavi ◽  
Arbel Harpak ◽  
Dalton Conley ◽  
Jonathan K Pritchard ◽  
Molly Przeworski

AbstractFields as diverse as human genetics and sociology are increasingly using polygenic scores based on genome-wide association studies (GWAS) for phenotypic prediction. However, recent work has shown that polygenic scores have limited portability across groups of different genetic ancestries, restricting the contexts in which they can be used reliably and potentially creating serious inequities in future clinical applications. Using the UK Biobank data, we demonstrate that even within a single ancestry group, the prediction accuracy of polygenic scores depends on characteristics such as the age or sex composition of the individuals in which the GWAS and the prediction were conducted, and on the GWAS study design. Our findings highlight both the complexities of interpreting polygenic scores and underappreciated obstacles to their broad use.


Author(s):  
Jack W. O’Sullivan ◽  
John P. A. Ioannidis

AbstractWith the establishment of large biobanks, discovery of single nucleotide polymorphism (SNPs) that are associated with various phenotypes has been accelerated. An open question is whether SNPs identified with genome-wide significance in earlier genome-wide association studies (GWAS) are replicated also in later GWAS conducted in biobanks. To address this question, the authors examined a publicly available GWAS database and identified two, independent GWAS on the same phenotype (an earlier, “discovery” GWAS and a later, replication GWAS done in the UK biobank). The analysis evaluated 136,318,924 SNPs (of which 6,289 had reached p<5e-8 in the discovery GWAS) from 4,397,962 participants across nine phenotypes. The overall replication rate was 85.0% and it was lower for binary than for quantitative phenotypes (58.1% versus 94.8% respectively). There was a18.0% decrease in SNP effect size for binary phenotypes, but a 12.0% increase for quantitative phenotypes. Using the discovery SNP effect size, phenotype trait (binary or quantitative), and discovery p-value, we built and validated a model that predicted SNP replication with area under the Receiver Operator Curve = 0.90. While non-replication may often reflect lack of power rather than genuine false-positive findings, these results provide insights about which discovered associations are likely to be seen again across subsequent GWAS.


2020 ◽  
Author(s):  
Dan Ju ◽  
Iain Mathieson

AbstractSkin pigmentation is a classic example of a polygenic trait that has experienced directional selection in humans. Genome-wide association studies have identified well over a hundred pigmentation-associated loci, and genomic scans in present-day and ancient populations have identified selective sweeps for a small number of light pigmentation-associated alleles in Europeans. It is unclear whether selection has operated on all the genetic variation associated with skin pigmentation as opposed to just a small number of large-effect variants. Here, we address this question using ancient DNA from 1158 individuals from West Eurasia covering a period of 40,000 years combined with genome-wide association summary statistics from the UK Biobank. We find a robust signal of directional selection in ancient West Eurasians on skin pigmentation variants ascertained in the UK Biobank, but find this signal is driven mostly by a limited number of large-effect variants. Consistent with this observation, we find that a polygenic selection test in present-day populations fails to detect selection with the full set of variants; rather, only the top five show strong evidence of selection. Our data allow us to disentangle the effects of admixture and selection. Most notably, a large-effect variant at SLC24A5 was introduced to Europe by migrations of Neolithic farming populations but continued to be under selection post-admixture. This study shows that the response to selection for light skin pigmentation in West Eurasia was driven by a relatively small proportion of the variants that are associated with present-day phenotypic variation.SignificanceSome of the genes responsible for the evolution of light skin pigmentation in Europeans show signals of positive selection in present-day populations. Recently, genome-wide association studies have highlighted the highly polygenic nature of skin pigmentation. It is unclear whether selection has operated on all of these genetic variants or just a subset. By studying variation in over a thousand ancient genomes from West Eurasia covering 40,000 years we are able to study both the aggregate behavior of pigmentation-associated variants and the evolutionary history of individual variants. We find that the evolution of light skin pigmentation in Europeans was driven by frequency changes in a relatively small fraction of the genetic variants that are associated with variation in the trait today.


2020 ◽  
Author(s):  
Lucas D. Ward ◽  
Ho-Chou Tu ◽  
Chelsea Quenneville ◽  
Alexander O. Flynn-Carroll ◽  
Margaret M. Parker ◽  
...  

AbstractTo better understand molecular pathways underlying liver health and disease, we performed genome-wide association studies (GWAS) on circulating levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) across 408,300 subjects from four ethnic groups in the UK Biobank, focusing on variants associating with both enzymes. Of these variants, the strongest effect is a rare (MAF in White British = 0.12%) missense variant in the gene encoding manganese efflux transporter SLC30A10, Thr95Ile (rs188273166), associating with a 5.9% increase in ALT and a 4.2% increase in AST. Carriers have higher prevalence of all-cause liver disease (OR = 1.70; 95% CI = 1.24 to 2.34) and higher prevalence of extrahepatic bile duct cancer (OR = 23.8; 95% CI = 9.1 to 62.1) compared to non-carriers. Over 4% of the cases of extrahepatic cholangiocarcinoma in the UK Biobank carry SLC30A10 Thr95Ile. Unlike variants in SLC30A10 known to cause the recessive syndrome hypermanganesemia with dystonia-1 (HMNDYT1), the Thr95Ile variant has a detectable effect even in the heterozygous state. Also unlike HMNDYT1-causing variants, Thr95Ile results in a protein that is properly trafficked to the plasma membrane when expressed in HeLa cells. These results suggest that coding variation in SLC30A10 impacts liver health in more individuals than the small population of HMNDYT1 patients.


Author(s):  
Mathew Vithayathil ◽  
Paul Carter ◽  
Siddhartha Kar ◽  
Amy M. Mason ◽  
Stephen Burgess ◽  
...  

ABSTRACTObjectivesTo investigate the casual role of body mass index, body fat composition and height in cancer.DesignTwo stage mendelian randomisation studySettingPrevious genome wide association studies and the UK BiobankParticipantsGenetic instrumental variables for body mass index (BMI), fat mass index (FMI), fat free mass index (FFMI) and height from previous genome wide association studies and UK Biobank. Cancer outcomes from 367 586 participants of European descent from the UK Biobank.Main outcome measuresOverall cancer risk and 22 site-specific cancers risk for genetic instrumental variables for BMI, FMI, FFMI and height.ResultsGenetically predicted BMI (per 1 kg/m2) was not associated with overall cancer risk (OR 0.99; 95% confidence interval (CI) 0-98-1.00, p=0.105). Elevated BMI was associated with increased risk of stomach cancer (OR 1.15, 95% (CI) 1.05-1.26; p=0.003) and melanoma (OR 0.96, 95% CI 0.92-1.00; p=0.044). For sex-specific cancers, BMI was positively associated with uterine cancer (OR 1.08, 95% CI 1.01-1.14; p=0.015) but inversely associated with breast (OR 0.95, 95% CI 0.92-0.98; p=0.001), prostate (OR 0.95, 95% CI 0.92-0.99; p=0.007) and testicular cancer (OR 0.89, 95% CI 0.81-0.98; p=0.017). Elevated FMI (per 1 kg/m2) was associated with gastrointestinal cancer (stomach cancer OR 4.23, 95% CI 1.18-15.13, p=0.027; colorectal cancer OR 1.94, 95% CI 1.23-3.07; p=0.004). Increased height (per 1 standard deviation, approximately 6.5cm) was associated with increased risk of overall cancer (OR 1.06; 95% 1.04-1.09; p = 2.97×10-8) and most site-specific cancers with the strongest estimates for kidney, non-Hodgkin lymphoma, colorectal, lung, melanoma and breast cancer.ConclusionsThere is little evidence for BMI as a casual risk factor for cancer. BMI may have a causal role for sex-specific cancers, although with inconsistent directions of effect, and FMI for gastrointestinal malignancies. Elevated height is a risk factor for overall cancer and multiple site cancers.


2020 ◽  
Vol 29 (16) ◽  
pp. 2803-2811
Author(s):  
James P Cook ◽  
Anubha Mahajan ◽  
Andrew P Morris

Abstract The UK Biobank is a prospective study of more than 500 000 participants, which has aggregated data from questionnaires, physical measures, biomarkers, imaging and follow-up for a wide range of health-related outcomes, together with genome-wide genotyping supplemented with high-density imputation. Previous studies have highlighted fine-scale population structure in the UK on a North-West to South-East cline, but the impact of unmeasured geographical confounding on genome-wide association studies (GWAS) of complex human traits in the UK Biobank has not been investigated. We considered 368 325 white British individuals from the UK Biobank and performed GWAS of their birth location. We demonstrate that widely used approaches to adjust for population structure, including principal component analysis and mixed modelling with a random effect for a genetic relationship matrix, cannot fully account for the fine-scale geographical confounding in the UK Biobank. We observe significant genetic correlation of birth location with a range of lifestyle-related traits, including body-mass index and fat mass, hypertension and lung function, even after adjustment for population structure. Variants driving associations with birth location are also strongly associated with many of these lifestyle-related traits after correction for population structure, indicating that there could be environmental factors that are confounded with geography that have not been adequately accounted for. Our findings highlight the need for caution in the interpretation of lifestyle-related trait GWAS in UK Biobank, particularly in loci demonstrating strong residual association with birth location.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Angli Xue ◽  
Longda Jiang ◽  
Zhihong Zhu ◽  
Naomi R. Wray ◽  
Peter M. Visscher ◽  
...  

AbstractGenome-wide association studies (GWAS) have discovered numerous genetic variants associated with human behavioural traits. However, behavioural traits are subject to misreports and longitudinal changes (MLC) which can cause biases in GWAS and follow-up analyses. Here, we demonstrate that individuals with higher disease burden in the UK Biobank (n = 455,607) are more likely to misreport or reduce their alcohol consumption levels, and propose a correction procedure to mitigate the MLC-induced biases. The alcohol consumption GWAS signals removed by the MLC corrections are enriched in metabolic/cardiovascular traits. Almost all the previously reported negative estimates of genetic correlations between alcohol consumption and common diseases become positive/non-significant after the MLC corrections. We also observe MLC biases for smoking and physical activities in the UK Biobank. Our findings provide a plausible explanation of the controversy about the effects of alcohol consumption on health outcomes and a caution for future analyses of self-reported behavioural traits in biobank data.


2020 ◽  
Author(s):  
Lanlan Chen ◽  
Aowen Tian ◽  
Zhipeng Liu ◽  
Miaoran Zhang ◽  
Xingchen Pan ◽  
...  

ABSTRACTBackgroundIt remains controversial whether daytime napping is beneficial for human health.ObjectiveTo examine the causal relationship between daytime napping and the risk for various human diseases.DesignPhenotype-wide Mendelian randomization study.SettingNon-UK Biobank cohorts reported in published genome-wide association studies (GWAS) provided the outcome phenotypes in the discovery stage. The UK Biobank cohort provided the outcome phenotypes in the validation stage.ParticipantsThe UK Biobank GWAS included 361,194 European-ancestry residents in the UK. Non-UKBB GWAS included various numbers of participants.ExposureSelf-reported daytime napping frequency.Main outcome measureA wide-spectrum of human health outcomes including obesity, major depressive disorder, and high cholesterol.MethodsWe examined the causal relationship between daytime napping frequency in the UK Biobank as exposure and a panel of 1,146 health outcomes reported in genome-wide association studies (GWAS), using a two-sample Mendelian randomization analysis. The significant findings were further validated in the UK Biobank health outcomes of 4,203 human traits and diseases. The causal effects were estimated using a fixed-effect inverse variance weighted model. MR-Egger intercept test was applied to detect horizontal pleiotropy, along with Cochran’s Q test to assess heterogeneity among the causal effects of IVs.FindingsThere were significant causal relationships between daytime napping frequency and a wide spectrum of human health outcomes. In particular, we validated that frequent daytime napping increased the risks of major depressive disorder, obesity and abnormal lipid profile.InterpretationThe current study showed that frequent daytime napping mainly had adverse impacts on physical and mental health. Cautions should be taken for health recommendations on daytime napping. Further studies are necessary to precisely define the best daytime napping strategies.


2021 ◽  
Author(s):  
Tomas W Fitzgerald ◽  
Ewan Birney

Copy number variation (CNV) has long been known to influence human traits having a rich history of research into common and rare genetic disease and although CNV is accepted as an important class of genomic variation, progress on copy number (CN) phenotype associations from Next Generation Sequencing data (NGS) has been limited, in part, due to the relative difficulty in CNV detection and an enrichment for large numbers of false positives. To date most successful CN genome wide association studies (CN-GWAS) have focused on using predictive measures of dosage intolerance or gene burden tests to gain sufficient power for detecting CN effects. Here we present a novel method for large scale CN analysis from NGS data generating robust CN estimates and allowing CN-GWAS to be performed genome wide in discovery mode. We provide a detailed analysis in the large scale UK BioBank resource and a specifically designed software package for deriving CN estimates from NGS data that are robust enough to be used for CN-GWAS. We use these methods to perform genome wide CN-GWAS analysis across 78 human traits discovering 862 genetic associations that are likely to contribute strongly to trait distributions based solely on their CN or by acting in concert with other genetic variation. Finally, we undertake an analysis comparing CNV and SNP association signals across the same traits and samples, defining specific CNV association classes based on whether they could be detected using standard SNP-GWAS in the UK Biobank.


2017 ◽  
Author(s):  
Jeremy J. Berg ◽  
Xinjun Zhang ◽  
Graham Coop

AbstractOur understanding of the genetic basis of human adaptation is biased toward loci of large pheno-typic effect. Genome wide association studies (GWAS) now enable the study of genetic adaptation in polygenic phenotypes. We test for polygenic adaptation among 187 world-wide human populations using polygenic scores constructed from GWAS of 34 complex traits. We identify signals of polygenic adaptation for anthropometric traits including height, infant head circumference (IHC), hip circumference and waist-to-hip ratio (WHR). Analysis of ancient DNA samples indicates that a north-south cline of height within Europe and and a west-east cline across Eurasia can be traced to selection for increased height in two late Pleistocene hunter gatherer populations living in western and west-central Eurasia. Our observation that IHC and WHR follow a latitudinal cline in Western Eurasia support the role of natural selection driving Bergmann’s Rule in humans, consistent with thermoregulatory adaptation in response to latitudinal temperature variation.Author’s Note on Failure to ReplicateAfter this preprint was posted, the UK Biobank dataset was released, providing a new and open GWAS resource. When attempting to replicate the height selection results from this preprint using GWAS data from the UK Biobank, we discovered that we could not. In subsequent analyses, we determined that both the GIANT consortium height GWAS data, as well as another dataset that was used for replication, were impacted by stratification issues that created or at a minimum substantially inflated the height selection signals reported here. The results of this second investigation, written together with additional coauthors, have now been published (https://elifesciences.org/articles/39725 along with another paper by a separate group of authors, showing similar issues https://elifesciences.org/articles/39702). A preliminary investigation shows that the other non-height based results may suffer from similar issues. We stand by the theory and statistical methods reported in this paper, and the paper can be cited for these results. However, we have shown that the data on which the major empirical results were based are not sound, and so should be treated with caution until replicated.


Sign in / Sign up

Export Citation Format

Share Document