scholarly journals Replication Study: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
John Kerwin ◽  
Israr Khan ◽  
Elizabeth Iorns ◽  
Rachel Tsui ◽  
Alexandria Denis ◽  
...  

As part of the Reproducibility Project: Cancer Biology we published a Registered Report (Khan et al., 2015), that described how we intended to replicate selected experiments from the paper "A coding-independent function of gene and pseudogene mRNAs regulates tumour biology" (Poliseno et al., 2010). Here we report the results. We found PTEN depletion in the prostate cancer cell line DU145 did not detectably impact expression of the corresponding pseudogene PTENP1. Similarly, depletion of PTENP1 did not impact PTEN mRNA levels. The original study reported PTEN or PTENP1 depletion statistically reduced the corresponding pseudogene or gene (Figure 2G; Poliseno et al., 2010). PTEN and/or PTENP1 depletion in DU145 cells decreased PTEN protein expression, which was similar to the original study (Figure 2H; Poliseno et al., 2010). Further, depletion of PTEN and/or PTENP1 increased DU145 proliferation compared to non-targeting siRNA, which was in the same direction as the original study (Figure 2F; Poliseno et al., 2010), but not statistically significant. We found PTEN 3'UTR overexpression in DU145 cells did not impact PTENP1 expression, while the original study reported PTEN 3'UTR increased PTENP1 levels (Figure 4A; Poliseno et al., 2010). Overexpression of PTEN 3'UTR also statistically decreased DU145 proliferation compared to controls, which was similar to the findings reported in the original study (Figure 4A; Poliseno et al., 2010). Differences between the original study and this replication attempt, such as level of knockdown efficiency and cellular confluence, are factors that might have influenced the results. Finally, where possible, we report meta-analyses for each result.

2016 ◽  
Vol 11 (2) ◽  
pp. 378
Author(s):  
Jin-Jun Sun ◽  
Shi-Feng Kan ◽  
Guan-Xing Sun

<p class="Abstract">We tried a new method of prostate cancer treatment by inducing<em> in vitro</em> differentiation which resulted in reduction of cancer cells growth. A protein kinase inhibitor, midostaurin's ability to trigger the human prostate cancer cell line, DU145 to segregate into nerve cells was studied. Midostaurin (100 nM) suppressed the growth of DU145 cells but without change in the number of dead cells. Midostaurin started to extend neurites on DU145 cells after 24 hours and differentiated into nerve cells by 72 hours. The microtubule was stabilized by tau protein and its mRNA expression showed time-dependent increase in midostaurin-treated DU145 cells. At the same time, the amount of acetylcholinesterase was also increased. The midostaurin-treated DU145 cells showed 40% less activity than control in the colony forming assay. The results suggests that midostaurin can induce differentiation of DU145 cells into nerve cells.</p><p> </p>


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Christine Mantis ◽  
Irawati Kandela ◽  
Fraser Aird ◽  

In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Kandela et al., 2015) that described how we intended to replicate selected experiments from the paper “Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs“ (Sugahara et al., 2010). Here we report the results of those experiments. We found that coadministration with iRGD peptide did not have an impact on permeability of the chemotherapeutic agent doxorubicin (DOX) in a xenograft model of prostate cancer, whereas the original study reported that it increased the penetrance of this cancer drug (Figure 2B; Sugahara et al., 2010). Further, in mice bearing orthotopic 22Rv1 human prostate tumors, we did not find a statistically significant difference in tumor weight for mice treated with DOX and iRGD compared to DOX alone, whereas the original study reported a decrease in tumor weight when DOX was coadministered with iRGD (Figure 2C; Sugahara et al., 2010). In addition, we did not find a statistically significant difference in TUNEL staining in tumor tissue between mice treated with DOX and iRGD compared to DOX alone, while the original study reported an increase in TUNEL positive staining with iRGD coadministration (Figure 2D; Sugahara et al., 2010). Similar to the original study (Supplemental Figure 9A; Sugahara et al., 2010), we did not observe an impact on mouse body weight with DOX and iRGD treatment. Finally, we report meta-analyses for each result.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Israr Khan ◽  
John Kerwin ◽  
Kate Owen ◽  
Erin Griner ◽  

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (<xref ref-type="bibr" rid="bib9">Errington et al., 2014</xref>). This Registered report describes the proposed replication plan of key experiments from ‘A coding-independent function of gene and pseudogene mRNAs regulates tumour biology’ by <xref ref-type="bibr" rid="bib26">Poliseno et al. (2010)</xref>, published in Nature in 2010. The key experiments to be replicated are reported in Figures 1D, 2F-H, and 4A. In these experiments, Poliseno and colleagues report microRNAs miR-19b and miR-20a transcriptionally suppress both PTEN and PTENP1 in prostate cancer cells (Figure 1D; <xref ref-type="bibr" rid="bib26">Poliseno et al., 2010</xref>). Decreased expression of PTEN and/or PTENP1 resulted in downregulated PTEN protein levels (Figure 2H), downregulation of both mRNAs (Figure 2G), and increased tumor cell proliferation (Figure 2F; <xref ref-type="bibr" rid="bib26">Poliseno et al., 2010</xref>). Furthermore, overexpression of the PTEN 3′ UTR enhanced PTENP1 mRNA abundance limiting tumor cell proliferation, providing additional evidence for the co-regulation of PTEN and PTENP1 (Figure 4A; <xref ref-type="bibr" rid="bib26">Poliseno et al., 2010</xref>). The Reproducibility Project: Cancer Biology is collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published in eLife.


2002 ◽  
pp. 407-415 ◽  
Author(s):  
S Sigala ◽  
N Tognazzi ◽  
MC Rizzetti ◽  
I Faraoni ◽  
C Missale ◽  
...  

BACKGROUND: One of the paracrine/autocrine factors regulating prostate growth and differentiation is nerve growth factor (NGF). The role of NGF and its receptors in the prostate, however, remains controversial. We have shown that NGF treatment of human prostate cancer cell lines reduced their tumorigenicity, both in vitro and in vivo. OBJECTIVE: To investigate the involvement of NGF as a differentiation factor in prostate cancer cells. DESIGN: We exposed the androgen-independent/androgen receptor (AR)-negative prostate cancer cell line DU145 to NGF to study whether this neurotrophin could revert DU145 cells to a less malignant phenotype. METHODS: DU145 cells were treated with NGF, then ARs and NGF receptor p75(NGFR) expression and telomerase activity were studied. Finally, we investigated whether re-expression of ARs could restore the androgen sensitivity in this cell line. RESULTS AND CONCLUSIONS: NGF treatment induced a reversion of DU145 cells to a less malignant phenotype, characterized by the re-expression of ARs and p75(NGFR) NGF receptors. Re-expression of ARs restored the androgen sensitivity, as suggested by the fact that exposure to dihydrotestosterone stimulated the growth of NGF-treated DU145 cells. This effect was blocked by androgen antagonist drugs, such as hydroxyflutamide and cyproterone acetate, which also induced apoptotic death of NGF-treated cells. The hypothesis that a differentiation pathway is activated by exogenous NGF in DU145 cells is also supported by findings indicating that NGF-treated DU145 cells expressed a low telomerase activity, as a result of a decrease in human telomerase reverse transcriptase transcription.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Xiaochuan Shan ◽  
Juan Jose Fung ◽  
Alan Kosaka ◽  
Gwenn Danet-Desnoyers ◽  

In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Fung et al., 2015), that described how we intended to replicate selected experiments from the paper "Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia" (Dawson et al., 2011). Here, we report the results of those experiments. We found treatment of MLL-fusion leukaemia cells (MV4;11 cell line) with the BET bromodomain inhibitor I-BET151 resulted in selective growth inhibition, whereas treatment of leukaemia cells harboring a different oncogenic driver (K-562 cell line) did not result in selective growth inhibition; this is similar to the findings reported in the original study (Figure 2A and Supplementary Figure 11A,B; Dawson et al., 2011). Further, I-BET151 resulted in a statistically significant decrease in BCL2 expression in MV4;11 cells, but not in K-562 cells; again this is similar to the findings reported in the original study (Figure 3D; Dawson et al., 2011). We did not find a statistically significant difference in survival when testing I-BET151 efficacy in a disseminated xenograft MLL mouse model, whereas the original study reported increased survival in I-BET151 treated mice compared to vehicle control (Figure 4B,D; Dawson et al., 2011). Differences between the original study and this replication attempt, such as different conditioning regimens and I-BET151 doses, are factors that might have influenced the outcome. We also found I-BET151 treatment resulted in a lower median disease burden compared to vehicle control in all tissues analyzed, similar to the example reported in the original study (Supplementary Figure 16A; Dawson et al., 2011). Finally, we report meta-analyses for each result.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Stephen K Horrigan ◽  
Pascal Courville ◽  
Darryl Sampey ◽  
Faren Zhou ◽  
Steve Cai ◽  
...  

In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Chroscinski et al., 2014) that described how we intended to replicate selected experiments from the paper "Melanoma genome sequencing reveals frequent PREX2 mutations" (Berger et al., 2012). Here we report the results of those experiments. We regenerated cells stably expressing ectopic wild-type and mutant phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 (PREX2) using the same immortalized human NRASG12D melanocytes as the original study. Evaluation of PREX2 expression in these newly generated stable cells revealed varying levels of expression among the PREX2 isoforms, which was also observed in the stable cells made in the original study (Figure S6A; Berger et al., 2012). Additionally, ectopically expressed PREX2 was found to be at least 5 times above endogenous PREX2 expression. The monitoring of tumor formation of these stable cells in vivo resulted in no statistically significant difference in tumor-free survival driven by PREX2 variants, whereas the original study reported that these PREX2 mutations increased the rate of tumor incidence compared to controls (Figure 3B and S6B; Berger et al., 2012). Surprisingly, the median tumor-free survival was 1 week in this replication attempt, while 70% of the control mice were reported to be tumor-free after 9 weeks in the original study. The rapid tumor onset observed in this replication attempt, compared to the original study, makes the detection of accelerated tumor growth in PREX2 expressing NRASG12D melanocytes extremely difficult. Finally, we report meta-analyses for each result.


2001 ◽  
Vol 26 (3) ◽  
pp. 185-191 ◽  
Author(s):  
D Dondi ◽  
R Maggi ◽  
E Scaccianoce ◽  
L Martini ◽  
M Motta ◽  
...  

We investigated the presence of glucocorticoid receptors (GR) as well as the role of glucocorticoids (Gc) in the control of proliferation of the androgen-independent prostate cancer cell line, DU145. We detected the presence of a specific high affinity binding site (K(d) 2.3 nM) for [(3)H]dexamethasone ([(3)H]Dex) in the cytosolic preparations of DU145 cells; the density of these binding sites is significantly higher than that detected in HA22T/VGH and in HepG2, two hepatoma cell lines classically considered models for the study of GR. Immunocytochemistry studies confirmed the presence of GR in the cytosolic compartment of DU145 cells; GR undergo translocation to the nucleus following exposure to dexamethasone (Dex). The functional activity of GR present in DU145 cells was also studied by analyzing the potency of Dex in inducing chloramphenicol acyltransferase (CAT) activity in DU145 cells transfected with a glucocorticoid/progesterone response element (GRE/PRE) tkCAT plasmid (GRE/PREtkCAT plasmid). The results have shown that Dex stimulates the transcriptional activity of GR in transfected DU145 cells with an EC(50) of 9.65 nM and a maximal induction of sevenfold above basal levels. Finally, a dose-dependent (IC(50) 3.14 nM) decrease of DU145 cell numbers was observed after their exposure to Dex for 4 days; this effect was counteracted by the presence of the steroid antagonist, RU486. In conclusion, the present data suggest a possible role of corticoids in the control of the growth of androgen-independent prostate cancer.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
L Michelle Lewis ◽  
Meredith C Edwards ◽  
Zachary R Meyers ◽  
C Conover Talbot ◽  
Haiping Hao ◽  
...  

As part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Blum et al., 2015), that described how we intended to replicate selected experiments from the paper ‘Transcriptional amplification in tumor cells with elevated c-Myc’ (Lin et al., 2012). Here we report the results. We found overexpression of c-Myc increased total levels of RNA in P493-6 Burkitt’s lymphoma cells; however, while the effect was in the same direction as the original study (Figure 3E; Lin et al., 2012), statistical significance and the size of the effect varied between the original study and the two different lots of serum tested in this replication. Digital gene expression analysis for a set of genes was also performed on P493-6 cells before and after c-Myc overexpression. Transcripts from genes that were active before c-Myc induction increased in expression following c-Myc overexpression, similar to the original study (Figure 3F; Lin et al., 2012). Transcripts from genes that were silent before c-Myc induction also increased in expression following c-Myc overexpression, while the original study concluded elevated c-Myc had no effect on silent genes (Figure 3F; Lin et al., 2012). Treating the data as paired, we found a statistically significant increase in gene expression for both active and silent genes upon c-Myc induction, with the change in gene expression greater for active genes compared to silent genes. Finally, we report meta-analyses for each result.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1702
Author(s):  
Taiga Seki ◽  
Yui Shimizu ◽  
Kyota Ishii ◽  
Yuzuki Takahama ◽  
Kazunori Kato ◽  
...  

Background: The occurrence of androgen-dependent prostate cancer mainly depends on prostate cancer stem cells. To reduce the risk of androgen-dependent prostate cancer, the direct elimination of prostate cancer stem cells is important, but an elimination strategy has not yet been established. A previous study showed that natural killer (NK) cells can preferentially target cancer stem cells in several solid tumors except prostate cancer. In this context, this study was undertaken to investigate if NK cells can selectively attack androgen-dependent prostate cancer stem cells. Methods: Prostate cancer stem-like cells were separated from an androgen-dependent prostate cancer cell line (LNCaP) using a three-dimensional culture system. LNCaP stem-like cells or LNCaP cells were co-cultured with human NK cells (KHYG-1) for 24–72 h, and cell viability was determined using the WST-8 method. The expression of each protein in the cell membrane was evaluated through FACS analysis, and mRNA levels were determined using real-time PCR. Results: KHYG-1 cells had more potent cytotoxicity against LNCaP stem-like cells than LNCaP cells, and the potency of the cytotoxicity was strongly related to the TRAIL/DR5 cell death pathway. Conclusion: NK cells can preferentially target prostate cancer stem-like cells via the TRAIL/DR5 pathway.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Anthony Essex ◽  
Javier Pineda ◽  
Grishma Acharya ◽  
Hong Xin ◽  
James Evans ◽  
...  

As part of the Reproducibility Project: Cancer Biology we published a Registered Report (Evans et al., 2015), that described how we intended to replicate selected experiments from the paper ‘Wnt activity defines colon cancer stem cells and is regulated by the microenvironment’ (Vermeulen et al., 2010). Here, we report the results. Using three independent primary spheroidal colon cancer cultures that expressed a Wnt reporter construct we observed high Wnt activity was associated with the cell surface markers CD133, CD166, and CD29, but not CD24 and CD44, while the original study found all five markers were correlated with high Wnt activity (Figure 2F; Vermeulen et al., 2010). Clonogenicity was highest in cells with high Wnt activity and clonogenic potential of cells with low Wnt activity were increased by myofibroblast-secreted factors, including HGF. While the effects were in the same direction as the original study (Figure 6D; Vermeulen et al., 2010) whether statistical significance was reached among the different conditions varied. When tested in vivo, we did not find a difference in tumorigenicity between high and low Wnt activity, while the original study found cells with high Wnt activity were more effective in inducing tumors (Figure 7E; Vermeulen et al., 2010). Tumorigenicity, however, was increased with myofibroblast-secreted factors, which was in the same direction as the original study (Figure 7E; Vermeulen et al., 2010), but not statistically significant. Finally, we report meta-analyses for each results where possible.


Sign in / Sign up

Export Citation Format

Share Document