scholarly journals The pattern of Nodal morphogen signaling is shaped by co-receptor expression

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Nathan D Lord ◽  
Adam N Carte ◽  
Philip B Abitua ◽  
Alexander F Schier

Embryos must communicate instructions to their constituent cells over long distances. These instructions are often encoded in the concentration of signals called morphogens. In the textbook view, morphogen molecules diffuse from a localized source to form a concentration gradient, and target cells adopt fates by measuring the local morphogen concentration. However, natural patterning systems often incorporate numerous co-factors and extensive signaling feedback, suggesting that embryos require additional mechanisms to generate signaling patterns. Here, we examine the mechanisms of signaling pattern formation for the mesendoderm inducer Nodal during zebrafish embryogenesis. We find that Nodal signaling activity spans a normal range in the absence of signaling feedback and relay, suggesting that diffusion is sufficient for Nodal gradient formation. We further show that the range of endogenous Nodal ligands is set by the EGF-CFC co-receptor Oep: in the absence of Oep, Nodal activity spreads to form a nearly uniform distribution throughout the embryo. In turn, increasing Oep levels sensitizes cells to Nodal ligands. We recapitulate these experimental results with a computational model in which Oep regulates the diffusive spread of Nodal ligands by setting the rate of capture by target cells. This model predicts, and we confirm in vivo, the surprising observation that a failure to replenish Oep transforms the Nodal signaling gradient into a travelling wave. These results reveal that patterns of Nodal morphogen signaling are shaped by co-receptor-mediated restriction of ligand spread and sensitization of responding cells.

Author(s):  
Nathan D. Lord ◽  
Adam N. Carte ◽  
Philip B. Abitua ◽  
Alexander F. Schier

AbstractEmbryos must communicate instructions to their constituent cells over long distances. These instructions are often encoded in the concentration of signals called morphogens. In the textbook view, morphogen molecules diffuse from a localized source to form a concentration gradient, and target cells adopt fates by measuring the local morphogen concentration. However, natural patterning systems often incorporate numerous co-factors and extensive signaling feedback, suggesting that embryos require additional mechanisms to generate signaling patterns. Here, we examine the mechanisms of signaling pattern formation for the mesendoderm inducer Nodal during zebrafish embryogenesis. We find that Nodal signaling activity spans a normal range in the absence of signaling feedback, suggesting that diffusion is sufficient for Nodal gradient formation. We further show that the range of endogenous Nodal ligands is set by the EGF-CFC co-receptor Oep: in the absence of Oep, Nodal ligands spread to form a nearly uniform distribution throughout the embryo. In turn, increasing Oep levels sensitizes cells to Nodal ligands. We recapitulate these experimental results with a computational model in which Oep regulates the diffusive spread of Nodal ligands by setting the rate of capture by target cells. This model predicts, and we confirm in vivo, the surprising observation that a failure to replenish Oep during patterning transforms the Nodal signaling gradient into a travelling wave. These results reveal that patterns of Nodal morphogen signaling are shaped by co-receptor-mediated restriction of ligand spread and cell sensitization.


2019 ◽  
Vol 20 (8) ◽  
pp. 1916 ◽  
Author(s):  
Marc L. Sprouse ◽  
Thomas Welte ◽  
Debasish Boral ◽  
Haowen N. Liu ◽  
Wei Yin ◽  
...  

Intratumoral infiltration of myeloid-derived suppressor cells (MDSCs) is known to promote neoplastic growth by inhibiting the tumoricidal activity of T cells. However, direct interactions between patient-derived MDSCs and circulating tumors cells (CTCs) within the microenvironment of blood remain unexplored. Dissecting interplays between CTCs and circulatory MDSCs by heterotypic CTC/MDSC clustering is critical as a key mechanism to promote CTC survival and sustain the metastatic process. We characterized CTCs and polymorphonuclear-MDSCs (PMN-MDSCs) isolated in parallel from peripheral blood of metastatic melanoma and breast cancer patients by multi-parametric flow cytometry. Transplantation of both cell populations in the systemic circulation of mice revealed significantly enhanced dissemination and metastasis in mice co-injected with CTCs and PMN-MDSCs compared to mice injected with CTCs or MDSCs alone. Notably, CTC/PMN-MDSC clusters were detected in vitro and in vivo either in patients’ blood or by longitudinal monitoring of blood from animals. This was coupled with in vitro co-culturing of cell populations, demonstrating that CTCs formed physical clusters with PMN-MDSCs; and induced their pro-tumorigenic differentiation through paracrine Nodal signaling, augmenting the production of reactive oxygen species (ROS) by PMN-MDSCs. These findings were validated by detecting significantly higher Nodal and ROS levels in blood of cancer patients in the presence of naïve, heterotypic CTC/PMN-MDSC clusters. Augmented PMN-MDSC ROS upregulated Notch1 receptor expression in CTCs through the ROS-NRF2-ARE axis, thus priming CTCs to respond to ligand-mediated (Jagged1) Notch activation. Jagged1-expressing PMN-MDSCs contributed to enhanced Notch activation in CTCs by engagement of Notch1 receptor. The reciprocity of CTC/PMN-MDSC bi-directional paracrine interactions and signaling was functionally validated in inhibitor-based analyses, demonstrating that combined Nodal and ROS inhibition abrogated CTC/PMN-MDSC interactions and led to a reduction of CTC survival and proliferation. This study provides seminal evidence showing that PMN-MDSCs, additive to their immuno-suppressive roles, directly interact with CTCs and promote their dissemination and metastatic potency. Targeting CTC/PMN-MDSC heterotypic clusters and associated crosstalks can therefore represent a novel therapeutic avenue for limiting hematogenous spread of metastatic disease.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4683-4683
Author(s):  
Dean Lee ◽  
Maureen Aliru ◽  
Cecele J. Denman ◽  
Srinivas S. Somanchi

Abstract Abstract 4683 Natural killer (NK) cells can kill malignant or virus-infected cells through the interaction of activating and inhibitory receptors without needing specific antigen recognition of target cells, and therefor have broad therapeutic applications for treatment of human malignancies. However, due to their limited life-span in vivo and poor expansion in vitro, production of sufficient numbers of NK cells for effective adoptive immunotherapy poses an obstacle. Genetically engineered artificial antigen presenting cells (aAPCs) consisting of K562 modified 4-1BBL and membrane bound IL-15 or IL-21 have been reported for their ability to support ex vivo NK cell proliferation. aAPCs with mbIL-21 were shown to promote increased proliferation of NK cells with shorter telomeres, but differences in in vivo survival or tumor or tissue migration have not been assessed. Tumor and/or tissue migration is primarily mediated by the expression of chemokine receptors. Using aAPCs bearing mbIL15 or mbIL21, we expanded NK cells for 3 weeks and assessed their expression of chemokine receptors, organ migration, and in vivo survival in a xenograft model. Propagated NK cells showed relatively similar levels of low to modest expression of CCR2, CCR7, CXCR4 and CXCR5, and high expression levels of CXCR3. Mean CCR5 expression levels were similar on cells that were positive, but CCR5 was expressed on a higher percentage of NK cells expanded with mbIL-15 than those expanded with mbIL-21. In contrast, about 20% of mbIL-21 expanded NK cells expressed CX3CR1 expression whereas mbIL-15 NK cells showed almost no expression of this receptor. Results from ongoing migration and survival experiments will also be presented. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3052-3052
Author(s):  
A. Dutour ◽  
D. Lee ◽  
S. Napier ◽  
E. Yvon ◽  
H. Finney ◽  
...  

3052 Background: EBV-specific cytotoxic T cells (EBV-CTLs) expand and have long-term activity in vivo due to the sustained costimulation provided by the EBV-infected cells produced by this persistent virus. We exploited this phenomenon and redirected EBV-CTLs against CD33, a surface protein expressed on the malignant blasts of acute myeloid leukemia (AML) cells. Methods: EBV-CTLs generated from six EBV-seropositive donors were transduced using a retroviral vector encoding CD33 specific chimeric receptor (cR). We evaluated whether the high and sustained activity shown against native EBV+ target cells can be extended to the CD33+ EBV- targets of the chimeric receptor and whether the addition of CD28 signaling domain improved the receptor activity. Results: cRCD33-EBV-CTL maintained killed EBV-LCL and CD33+ targets (specific lysis respectively of 30% and 35% at E:T ratio 25:1). They produced Th-1, Th-2 and Tc cytokines on exposure to CD33+ targets. Addition of the CD28 intracellular domain did not increase cytotoxicity to CD33+ targets. Preincubation of CD33+ cells with the CD33-blocking MoAb resulted in up to 40% inhibition of lysis and up to 60% inhibition of cytokine release by cRCD33-EBV-CTLs confirming the specificity of the TCR interactions with CD33. NOD-SCID mice bearing a human CD33+ AML were injected with EBV-CTLs ×4 weekly starting 5 days after tumor inoculation. Significant tumor reduction was only observed in mice treated with the cRCD33-EBV-CTLs (p<0.05). Immunohistologic analysis showed the presence of a majority of CD8+ human T cells in the tumors of treated mice. Incorporation of the CD28 endodomain resulted in less tumor-infiltrating T cells in mice treated with cRCD33CD28-EBV-CTLs. There was no significant difference in the chemokines receptor expression on cRCD33CD28-EBV-CTLs but their rate of apoptosis was 16 % higher (p<0.05) than the one of cRCD33-EBV-CTLs. Conclusions: EBV- CTL expressing the CD33 chimeric receptor are functional in vitro and in vivo in mice. CD28 signaling may have a deleterious role for the activity of chimeric receptors in vivo. No significant financial relationships to disclose.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3169-3169
Author(s):  
Kathrin Schönberg ◽  
Janna Rudolph ◽  
Maria Vonnahme ◽  
Isabelle Cornez ◽  
Sowmya Parampalli Yajnanarayana ◽  
...  

Abstract Introduction: Ruxolitinib (INCB018424) is the first JAK inhibitor approved for treatment of myelofibrosis (MF). Ruxolitinib-induced reduction of splenomegaly and symptoms control is linked to a substantial suppression of MF-associated circulating pro-inflammatory and pro-angiogenic cytokines. However, an increased rate of infections in ruxolitinib-exposed patients with MF was recently described. Natural killer (NK) cells are innate immune effector cells eliminating malignant or virus-infected cells. Thus, the aim of this project was to define in more detail the impact of JAK inhibition on NK cell biology both in vitro and in vivo. Methods: 28 patients with myeloproliferative neoplasms (MPN) with or without ruxolitinib therapy and 12 healthy donors were analyzed for NK cell frequency, NK receptor expression and function. Phenotypic and functional NK cell markers (e.g. CD11b, CD27, KIR, NKG2A, NKG2D, NKp46, CD16, granzyme B, and perforin) were analyzed by FACS. NK cell function was evaluated by classical killing assays upon stimulation with MHC class I-deficient target cells K562. Finally, a set of additional in vitro experiments (e.g. analysis of lytic synapse formation by FACS and confocal microscopy) were performed to define in more detail the characteristics and potential mechanisms of ruxolitinib-induced NK cell dysfunction. Results: In addition to our recent finding that ruxolitinib induces NK cell dysfunction in vitro (e.g. reduced killing, degranulation and IFN-γ production), we here demonstrate that NK cell proliferation and cytokine-induced receptor expression as well as cytokine signalling are drastically impaired by ruxolitinib. Interestingly, reduced killing is at least in part due to a reduced capacity to form a mature lytic synapse with target cells. The significance of the in vitrofindings is underscored by a dramatically reduced proportion and absolute number of NK cells in ruxolitinib-treated MPN patients when compared to treatment-naïve patients or to healthy controls (mean percentage of NK cell frequency: ruxolitinib-naïve MPN patients 12.63% ±1.81; healthy donors 13.51% ±1.44; ruxolitinib-treated patients 5.47% ±1.27). A systematic analysis of NK cell receptor expression revealed that the reduction of NK cells in ruxolitinib-exposed individuals is most likely due to an impaired NK cell differentiation and maturation process, as reflected by a significantly increased ratio of immature to mature NK cells. Finally, the endogenous functional NK cell defect in MPN is further aggravated by intake of the JAK inhibitor ruxolitinib. Conclusion: We here provide compelling in vitro and in vivo evidence that inhibition of the JAK/STAT-pathway by ruxolitinib exerts substantial effects on the NK cell compartment in MPN patients due to the inhibition of NK cell differentiation and NK cell key functions. Our data may help to better understand the increased rate of severe infections and complement recent reports on ruxolitinib-induced immune dysfunction. Disclosures Koschmieder: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel, Accomodation, Expenses Other. Brümmendorf:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Wolf:Novartis: Consultancy, Honoraria, Research Funding, Travel and Accommodation Other.


2021 ◽  
Author(s):  
P. C. Dave P. Dingal ◽  
Adam N. Carte ◽  
Tessa G. Montague ◽  
Alexander F. Schier

AbstractThe TGF-beta signals Vg1 and Nodal form heterodimers to induce the vertebrate mesendoderm. The Vg1 proprotein is a monomer retained in the endoplasmic reticulum (ER) and is processed and secreted upon heterodimerization with Nodal. Here we investigate the mechanisms underlying Vg1 retention, processing, secretion and signaling in zebrafish. First, using a newly devised Synthetic Processing (SynPro) system, we find that Vg1 can be processed by intra- or extracellular proteases. Second, Vg1 can be processed without Nodal but requires Nodal for secretion and signaling. Third, Vg1-Nodal signaling activity requires Vg1 processing, whereas Nodal can remain unprocessed. Fourth, Vg1 employs exposed cysteines, glycosylated asparagines, and BiP chaperone-binding motifs for monomer retention in the ER. Our results establish SynPro as a new in vivo processing system and define molecular mechanisms and motifs that facilitate the generation of active Vg1-Nodal heterodimers. These observations suggest two strategies for rapid mesendoderm induction: chaperone-binding motifs help store Vg1 as an inactive but ready-to-heterodimerize monomer in the ER, and the flexibility of Vg1 processing location allows efficient generation of active heterodimers both intra- and extracellularly.


1995 ◽  
Vol 74 (02) ◽  
pp. 673-679 ◽  
Author(s):  
C E Dempfle ◽  
S A Pfitzner ◽  
M Dollman ◽  
K Huck ◽  
G Stehle ◽  
...  

SummaryVarious assays have been developed for quantitation of soluble fibrin or fibrin monomer in clinical plasma samples, since this parameter directly reflects in vivo thrombin action on fibrinogen. Using plasma samples from healthy blood donors, patients with cerebral ischemic insult, patients with septicemia, and patients with venous thrombosis, we compared two immunologic tests using monoclonal antibodies against fibrin-specific neo-epitopes, and two functional tests based on the cofactor activity of soluble fibrin complexes in tPA-induced plasminogen activation. Test A (Enzymun®-Test FM) showed the best discriminating power among normal range and pathological samples. Test B (Fibrinostika® soluble fibrin) clearly separated normal range from pathological samples, but failed to discriminate among samples from patients with low grade coagulation activation in septicemia, and massive activation in venous thrombosis. Functional test C (Fibrin monomer test Behring) displayed good discriminating power between normal and pathological range samples, and correlated with test A (r = 0.61), whereas assay D (Coa-Set® Fibrin monomer) showed little discriminating power at values below 10 μg/ml and little correlation with other assays. Standardization of assays will require further characterization of analytes detected.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


2013 ◽  
Vol 142-143 ◽  
pp. 447-457 ◽  
Author(s):  
Afonso C.D. Bainy ◽  
Akira Kubota ◽  
Jared V. Goldstone ◽  
Roger Lille-Langøy ◽  
Sibel I. Karchner ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2530
Author(s):  
Bijean D. Ford ◽  
Diego Moncada Giraldo ◽  
Camilla Margaroli ◽  
Vincent D. Giacalone ◽  
Milton R. Brown ◽  
...  

Cystic fibrosis (CF) lung disease is dominated by the recruitment of myeloid cells (neutrophils and monocytes) from the blood which fail to clear the lung of colonizing microbes. In prior in vitro studies, we showed that blood neutrophils migrated through the well-differentiated lung epithelium into the CF airway fluid supernatant (ASN) mimic the dysfunction of CF airway neutrophils in vivo, including decreased bactericidal activity despite an increased metabolism. Here, we hypothesized that, in a similar manner to neutrophils, blood monocytes undergo significant adaptations upon recruitment to CFASN. To test this hypothesis, primary human blood monocytes were transmigrated in our in vitro model into the ASN from healthy control (HC) or CF subjects to mimic in vivo recruitment to normal or CF airways, respectively. Surface phenotype, metabolic and bacterial killing activities, and transcriptomic profile by RNA sequencing were quantified post-transmigration. Unlike neutrophils, monocytes were not metabolically activated, nor did they show broad differences in activation and scavenger receptor expression upon recruitment to the CFASN compared to HCASN. However, monocytes recruited to CFASN showed decreased bactericidal activity. RNASeq analysis showed strong effects of transmigration on monocyte RNA profile, with differences between CFASN and HCASN conditions, notably in immune signaling, including lower expression in the former of the antimicrobial factor ISG15, defensin-like chemokine CXCL11, and nitric oxide-producing enzyme NOS3. While monocytes undergo qualitatively different adaptations from those seen in neutrophils upon recruitment to the CF airway microenvironment, their bactericidal activity is also dysregulated, which could explain why they also fail to protect CF airways from infection.


Sign in / Sign up

Export Citation Format

Share Document