scholarly journals Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Emma J Fenech ◽  
Federica Lari ◽  
Philip D Charles ◽  
Roman Fischer ◽  
Marie Laétitia-Thézénas ◽  
...  

Ubiquitin ligases (E3s) embedded in the endoplasmic reticulum (ER) membrane regulate essential cellular activities including protein quality control, calcium flux, and sterol homeostasis. At least 25 different, transmembrane domain (TMD)-containing E3s are predicted to be ER-localised, but for most their organisation and cellular roles remain poorly defined. Using a comparative proteomic workflow, we mapped over 450 protein-protein interactions for 21 stably expressed, full-length E3s. Bioinformatic analysis linked ER-E3s and their interactors to multiple homeostatic, regulatory, and metabolic pathways. Among these were four membrane-embedded interactors of RNF26, a polytopic E3 whose abundance is auto-regulated by ubiquitin-proteasome dependent degradation. RNF26 co-assembles with TMEM43, ENDOD1, TMEM33 and TMED1 to form a complex capable of modulating innate immune signalling through the cGAS-STING pathway. This RNF26 complex represents a new modulatory axis of STING and innate immune signalling at the ER membrane. Collectively, these data reveal the broad scope of regulation and differential functionalities mediated by ER-E3s for both membrane-tethered and cytoplasmic processes.

Author(s):  
Emma J. Fenech ◽  
Federica Lari ◽  
Philip D. Charles ◽  
Roman Fischer ◽  
Marie Laétitia-Thézénas ◽  
...  

AbstractUbiquitin ligases (E3s) embedded in the endoplasmic reticulum (ER) membrane regulate essential cellular activities including protein quality control, calcium flux, and sterol homeostasis. At least 25 different, transmembrane domain (TMD)-containing E3s are predicted to be ER-localised, but for most their organisation and cellular roles remain poorly defined. Using a comparative proteomic workflow, we mapped over 450 protein-protein interactions for 21 different stably expressed, full-length E3s. Bioinformatic analysis linked ER-E3s and their interactors to multiple homeostatic, regulatory, and metabolic pathways. Among these were four membrane-embedded interactors of RNF26, a polytopic E3 whose abundance is auto-regulated by ubiquitin-proteasome dependent degradation. RNF26 co-assembles with TMEM43, ENDOD1, TMEM33 and TMED1 to form a complex capable of modulating innate immune signalling through the cGAS-STING pathway. This RNF26 complex represents a new modulatory axis of STING and innate immune signalling at the ER membrane. Collectively, these data reveal the broad scope of regulation and differential functionalities mediated by ER-E3s for both membrane-tethered and cytoplasmic processes.


2008 ◽  
Vol 294 (6) ◽  
pp. F1279-F1286 ◽  
Author(s):  
Kimberly H. Weber ◽  
Eun Kyung Lee ◽  
Uma Basavanna ◽  
Sabina Lindley ◽  
Roy C. Ziegelstein ◽  
...  

We previously found that polycystin-1 accelerated the decay of ligand-activated cytoplasmic calcium transients through enhanced reuptake of calcium into the endoplasmic reticulum (ER; Hooper KM, Boletta A, Germino GG, Hu Q, Ziegelstein RC, Sutters M. Am J Physiol Renal Physiol 289: F521–F530, 2005). Calcium flux across the ER membrane is determined by the balance of active uptake and passive leak. In the present study, we show that polycystin-1 inhibited calcium leak across the ER membrane, an effect that would explain the capacity of this protein to accelerate clearance of calcium from the cytoplasm following a calcium release response. Calcium leak was detected by measurement of the accumulation of calcium in the cytoplasm following treatment with thapsigargin. Heterologous polycystin-1, stably expressed in Madin-Darby canine kidney cells, attenuated the thapsigargin-induced calcium peak with no effect on basal calcium stores, mitochondrial calcium uptake, or extrusion of calcium across the plasma membrane. The capacity of polycystin-1 to limit the rate of decay of ER luminal calcium following inhibition of the pump was shown indirectly using the calcium ionophore ionomycin, and directly by loading the ER with a low-affinity calcium indicator. We conclude that disruption of ER luminal calcium homeostasis may contribute to the cyst phenotype in autosomal dominant polycystic kidney disease.


2006 ◽  
Vol 394 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Mark Chalmers ◽  
Michael J. Schell ◽  
Peter Thorn

The size and number of IP3R (inositol 1,4,5-trisphosphate receptor) clusters located on the surface of the ER (endoplasmic reticulum) is hypothesized to regulate the propagation of Ca2+ waves in cells, but the mechanisms by which the receptors cluster are not understood. Using immunocytochemistry, live-cell imaging and heterologous expression of ER membrane proteins we have investigated IP3R clustering in the basophilic cell line RBL-2H3 following the activation of native cell-surface antigen receptors. IP3R clusters are present in resting cells, and upon receptor stimulation, form larger aggregates. Cluster formation and maintenance required the presence of extracellular Ca2+ in both resting and stimulated cells. Using transfection with a marker of the ER, we found that the ER itself also showed structural changes, leading to an increased number of ‘hotspots’, following antigen stimulation. Surprisingly, however, when we compared the ER hotspots and IP3R clusters, we found them to be distinct. Imaging of YFP (yellow fluorescent protein)–IP3R transfected in to living cells confirmed that IP3R clustering increased upon stimulation. Photobleaching experiments showed that the IP3R occupied a single contiguous ER compartment both before and after stimulation, suggesting a dynamic exchange of IP3R molecules between the clusters and the surrounding ER membrane. It also showed a decrease in the mobile fraction after cell activation, consistent with receptor anchoring within clusters. We conclude that IP3R clustering in RBL-2H3 cells is not simply a reflection of bulk-changes in ER structure, but rather is due to the receptor undergoing homotypic or heterotypic protein–protein interactions in response to agonist stimulation.


2020 ◽  
Author(s):  
Emma J Fenech ◽  
Federica Lari ◽  
Philip D Charles ◽  
Roman Fischer ◽  
Marie Laétitia-Thézénas ◽  
...  

2021 ◽  
pp. mbc.E20-09-0590
Author(s):  
Amit S. Joshi ◽  
Joey V. Ragusa ◽  
William A. Prinz ◽  
Sarah Cohen

Lipid droplets (LDs) are neutral lipid-containing organelles enclosed in a single monolayer of phospholipids. LD formation begins with the accumulation of neutral lipids within the bilayer of the endoplasmic reticulum (ER) membrane. It is not known how the sites of formation of nascent LDs in the ER membrane are determined. Here we show that multiple C2 domain-containing transmembrane proteins, MCTP1 and MCTP2, are at sites of LD formation in specialized ER subdomains. We show that the transmembrane domain (TMD) of these proteins is similar to a reticulon homology domain. Like reticulons, these proteins tubulate the ER membrane and favor highly curved regions of the ER. Our data indicate that the MCTP TMDs promote LD biogenesis, increasing LD number. MCTPs co-localize with seipin, a protein involved in LD biogenesis, but form more stable microdomains in the ER. The MCTP C2 domains bind charged lipids and regulate LD size, likely by mediating ER-LD contact sites. Together, our data indicate that MCTPs form microdomains within ER tubules that regulate LD biogenesis, size, and ER-LD contacts. Interestingly, MCTP punctae colocalized with other organelles as well, suggesting that these proteins may play a more general role in linking tubular ER to organelle contact sites. [Media: see text] [Media: see text]


2008 ◽  
Vol 181 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Paolo Ronchi ◽  
Sara Colombo ◽  
Maura Francolini ◽  
Nica Borgese

The length and hydrophobicity of the transmembrane domain (TMD) play an important role in the sorting of membrane proteins within the secretory pathway; however, the relative contributions of protein–protein and protein–lipid interactions to this phenomenon are currently not understood. To investigate the mechanism of TMD-dependent sorting, we used the following two C tail–anchored fluorescent proteins (FPs), which differ only in TMD length: FP-17, which is anchored to the endoplasmic reticulum (ER) membrane by 17 uncharged residues, and FP-22, which is driven to the plasma membrane by its 22-residue-long TMD. Before export of FP-22, the two constructs, although freely diffusible, were seen to distribute differently between ER tubules and sheets. Analyses in temperature-blocked cells revealed that FP-17 is excluded from ER exit sites, whereas FP-22 is recruited to them, although it remains freely exchangeable with the surrounding reticulum. Thus, physicochemical features of the TMD influence sorting of membrane proteins both within the ER and at the ER–Golgi boundary by simple receptor-independent mechanisms based on partitioning.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009347
Author(s):  
Xiangzhen Yu ◽  
Dongsheng Jia ◽  
Zhen Wang ◽  
Guangjun Li ◽  
Manni Chen ◽  
...  

In the field, many insect-borne crop viral diseases are more suitable for maintenance and spread in hot-temperature areas, but the mechanism remains poorly understood. The epidemic of a planthopper (Sogatella furcifera)-transmitted rice reovirus (southern rice black-streaked dwarf virus, SRBSDV) is geographically restricted to southern China and northern Vietnam with year-round hot temperatures. Here, we reported that two factors of endoplasmic reticulum-associated degradation (ERAD) machinery, the heat shock protein DnaJB11 and ER membrane protein BAP31, were activated by viral infection to mediate the adaptation of S. furcifera to high temperatures. Infection and transmission efficiencies of SRBSDV by S. furcifera increased with the elevated temperatures. We observed that high temperature (35°C) was beneficial for the assembly of virus-containing tubular structures formed by nonstructural protein P7-1 of SRBSDV, which facilitates efficient viral transmission by S. furcifera. Both DnaJB11 and BAP31 competed to directly bind to the tubule protein P7-1 of SRBSDV; however, DnaJB11 promoted whereas BAP31 inhibited P7-1 tubule assembly at the ER membrane. Furthermore, the binding affinity of DnaJB11 with P7-1 was stronger than that of BAP31 with P7-1. We also revealed that BAP31 negatively regulated DnaJB11 expression through their direct interaction. High temperatures could significantly upregulate DnaJB11 expression but inhibit BAP31 expression, thereby strongly facilitating the assembly of abundant P7-1 tubules. Taken together, we showed that a new temperature-dependent protein quality control pathway in the ERAD machinery has evolved for strong activation of DnaJB11 for benefiting P7-1 tubules assembly to support efficient transmission of SRBSDV in high temperatures. We thus deduced that ERAD machinery has been hitchhiked by insect-borne crop viruses to enhance their transmission in tropical climates.


2017 ◽  
Author(s):  
Benjamin S.H. Ng ◽  
Peter Shyu ◽  
Nurulain Ho ◽  
Ruijie Chaw ◽  
Seah Yi Ling ◽  
...  

ABSTRACTBackgroundPhospholipid homeostasis in biological membranes is essential to maintain functions of organelles such as the endoplasmic reticulum. Phospholipid perturbation has been associated to non-alcoholic fatty liver disease, obesity and other metabolic disorders. However, in most cases, the biological significance of lipid disequilibrium remains unclear. Previously, we reported that Saccharomyces cerevisiae adapts to lipid disequilibrium by upregulating several protein quality control pathways such as the endoplasmic reticulum-associated degradation (ERAD) pathway and the unfolded protein response (UPR).ResultsSurprisingly, we observed certain ER-resident transmembrane proteins (TPs), which form part of the UPR programme, to be destabilised under lipid perturbation (LP). Among these, Sbh1 was prematurely degraded by fatty acid remodelling and membrane stiffening of the ER. Moreover, the protein translocon subunit Sbh1 is targeted for degradation through its transmembrane domain in an unconventional Doa10-dependent manner.ConclusionPremature removal of key ER-resident TPs might be an underlying cause of chronic ER stress in metabolic disorders.


2021 ◽  
Vol 22 (4) ◽  
pp. 2078
Author(s):  
Ji An Kang ◽  
Young Joo Jeon

The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin–proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.


Sign in / Sign up

Export Citation Format

Share Document