scholarly journals Gap junction-mediated glycinergic inhibition ensures precise temporal patterning in vocal behavior

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Boris P Chagnaud ◽  
Jonathan T Perelmuter ◽  
Paul M Forlano ◽  
Andrew H Bass

Precise neuronal firing is especially important for behaviors highly dependent on the correct sequencing and timing of muscle activity patterns, such as acoustic signaling. Acoustic signaling is an important communication modality for vertebrates, including many teleost fishes. Toadfishes are well known to exhibit high temporal fidelity in synchronous motoneuron firing within a hindbrain network directly determining the temporal structure of natural calls. Here, we investigated how these motoneurons maintain synchronous activation. We show that pronounced temporal precision in population-level motoneuronal firing depends on gap junction-mediated, glycinergic inhibition that generates a period of reduced probability of motoneuron activation. Super-resolution microscopy confirms glycinergic release sites formed by a subset of adjacent premotoneurons contacting motoneuron somata and dendrites. In aggregate, the evidence supports the hypothesis that gap junction-mediated, glycinergic inhibition provides a timing mechanism for achieving synchrony and temporal precision in the millisecond range for rapid modulation of acoustic waveforms.

2020 ◽  
Author(s):  
Boris P. Chagnaud ◽  
Jonathan Perelmuter ◽  
Paul Forlano ◽  
Andrew H. Bass

AbstractPrecise neuronal firing is especially important for behaviors highly dependent on the correct sequencing and timing of muscle activity patterns, such as acoustic signalling. We show that extreme temporal precision in motoneuronal firing within a hindbrain network that directly determines call duration, pulse repetition rate and fundamental frequency in a teleost fish, the Gulf toadfish, depends on gap junction-mediated, feed-forward glycinergic inhibition that generates a period of reduced probability of motoneuron activation. Super-resolution microscopy confirms glycinergic release sites contacting motoneuron somata and dendrites. Synchronous motoneuron activity can also induce action potential firing in pre-motoneurons, a feature that could figure prominently into motor timing. Gap junction-mediated, feed-forward glycinergic inhibition provides a novel means for achieving temporal precision in the millisecond range for rapid modulation of an acoustic signal and perhaps other motor behaviors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Callenberg ◽  
A. Lyons ◽  
D. den Brok ◽  
A. Fatima ◽  
A. Turpin ◽  
...  

AbstractImaging across both the full transverse spatial and temporal dimensions of a scene with high precision in all three coordinates is key to applications ranging from LIDAR to fluorescence lifetime imaging. However, compromises that sacrifice, for example, spatial resolution at the expense of temporal resolution are often required, in particular when the full 3-dimensional data cube is required in short acquisition times. We introduce a sensor fusion approach that combines data having low-spatial resolution but high temporal precision gathered with a single-photon-avalanche-diode (SPAD) array with data that has high spatial but no temporal resolution, such as that acquired with a standard CMOS camera. Our method, based on blurring the image on the SPAD array and computational sensor fusion, reconstructs time-resolved images at significantly higher spatial resolution than the SPAD input, upsampling numerical data by a factor $$12 \times 12$$ 12 × 12 , and demonstrating up to $$4 \times 4$$ 4 × 4 upsampling of experimental data. We demonstrate the technique for both LIDAR applications and FLIM of fluorescent cancer cells. This technique paves the way to high spatial resolution SPAD imaging or, equivalently, FLIM imaging with conventional microscopes at frame rates accelerated by more than an order of magnitude.


2021 ◽  
Vol 7 (1) ◽  
pp. eabe4310
Author(s):  
Yue Li ◽  
Adam Eshein ◽  
Ranya K.A. Virk ◽  
Aya Eid ◽  
Wenli Wu ◽  
...  

Extending across multiple length scales, dynamic chromatin structure is linked to transcription through the regulation of genome organization. However, no individual technique can fully elucidate this structure and its relation to molecular function at all length and time scales at both a single-cell level and a population level. Here, we present a multitechnique nanoscale chromatin imaging and analysis (nano-ChIA) platform that consolidates electron tomography of the primary chromatin fiber, optical super-resolution imaging of transcription processes, and label-free nano-sensing of chromatin packing and its dynamics in live cells. Using nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nanometers, sub-megabase genomic size, and an internal fractal structure. The chromatin packing behavior of these domains exhibits a complex bidirectional relationship with active gene transcription. Furthermore, we found that properties of PDs are correlated among progenitor and progeny cells across cell division.


2016 ◽  
Vol 11 (33) ◽  
pp. 241-247 ◽  
Author(s):  
Sergio García-Benítez ◽  
Txomin Pérez-Bilbao ◽  
Martín Echegaray ◽  
José Luis Felipe

Author(s):  
Daniel Deitch ◽  
Alon Rubin ◽  
Yaniv Ziv

AbstractNeuronal representations in the hippocampus and related structures gradually change over time despite no changes in the environment or behavior. The extent to which such ‘representational drift’ occurs in sensory cortical areas and whether the hierarchy of information flow across areas affects neural-code stability have remained elusive. Here, we address these questions by analyzing large-scale optical and electrophysiological recordings from six visual cortical areas in behaving mice that were repeatedly presented with the same natural movies. We found representational drift over timescales spanning minutes to days across multiple visual areas. The drift was driven mostly by changes in individual cells’ activity rates, while their tuning changed to a lesser extent. Despite these changes, the structure of relationships between the population activity patterns remained stable and stereotypic, allowing robust maintenance of information over time. Such population-level organization may underlie stable visual perception in the face of continuous changes in neuronal responses.


1979 ◽  
Vol 42 (2) ◽  
pp. 420-440 ◽  
Author(s):  
G. E. Loeb ◽  
J. Duysens

1. Chronically implanted microelectrode wires in the L7 and S1 dorsal root ganglia were used to record unit activity from cat hindlimb primary and secondary muscle spindle afferents. Units could be reliably recorded for several days, permitting comparison of their activity with homonymous muscle EMG and length during a variety of normal, unrestrained movements. 2. The general observation was that among both primary and secondary endings there was a broad range of different patterns of activity depending on the type of muscle involved and the type of movement performed. 3. During walking, the activity of a given spindle primary was usually consistent among similar step cycles. However, the activity was usually poorly correlated with absolute muscle length, apparently unrealted to velocity of muscle stretch, and could change markedly for similar movements performed under different conditions. 4. Spindle activity modulation not apparently related to muscle length changes was assumed to be influenced by fusimotor activity. In certain muscles, this presumption leads to the conclusion that gamma-motoneurons may be activated out of phase with homonymous alpha-motoneurons as well as by more conventional alpha-gamma-motoneuron coactivation. 5. Simultaneous recordings of two spindle primary afferents from extensor digitorum longus indicated that spindles within the same muscle may differ considerably with respect to this presumed gamma-motoneuron drive. 6. Spindle secondary endings appeared to be predominantly passive indicators of muscle length during walking, but could demonstrate apparently strong fusimotor modulation during other motor activities such as postural changes and paw shaking. 7. Both primary and secondary endings were observed to undergo very rapid modulation of firing rates in response to presumed reflexly induced intrafusal contractions. 8. It is suggested that the pattern of fusimotor control of spindles may be tailored to the specific muscle and task being performed, rather than necessarily dominated by rigid alpha-gamma coactivation.


2020 ◽  
Vol 375 (1799) ◽  
pp. 20190231 ◽  
Author(s):  
David Tingley ◽  
Adrien Peyrache

A major task in the history of neurophysiology has been to relate patterns of neural activity to ongoing external stimuli. More recently, this approach has branched out to relating current neural activity patterns to external stimuli or experiences that occurred in the past or future. Here, we aim to review the large body of methodological approaches used towards this goal, and to assess the assumptions each makes with reference to the statistics of neural data that are commonly observed. These methods primarily fall into two categories, those that quantify zero-lag relationships without examining temporal evolution, termed reactivation , and those that quantify the temporal structure of changing activity patterns, termed replay . However, no two studies use the exact same approach, which prevents an unbiased comparison between findings. These observations should instead be validated by multiple and, if possible, previously established tests. This will help the community to speak a common language and will eventually provide tools to study, more generally, the organization of neuronal patterns in the brain. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.


2019 ◽  
Vol 5 (1) ◽  
pp. e000567 ◽  
Author(s):  
Nina Cesare ◽  
Quynh C Nguyen ◽  
Christan Grant ◽  
Elaine O Nsoesie

ObjectivesWe examined the use of data from social media for surveillance of physical activity prevalence in the USA.MethodsWe obtained data from the social media site Twitter from April 2015 to March 2016. The data consisted of 1 382 284 geotagged physical activity tweets from 481 146 users (55.7% men and 44.3% women) in more than 2900 counties. We applied machine learning and statistical modelling to demonstrate sex and regional variations in preferred exercises, and assessed the association between reports of physical activity on Twitter and population-level inactivity prevalence from the US Centers for Disease Control and Prevention.ResultsThe association between physical inactivity tweet patterns and physical activity prevalence varied by sex and region. Walking was the most popular physical activity for both men and women across all regions (15.94% (95% CI 15.85% to 16.02%) and 18.74% (95% CI 18.64% to 18.88%) of tweets, respectively). Men and women mentioned performing gym-based activities at approximately the same rates (4.68% (95% CI 4.63% to 4.72%) and 4.13% (95% CI 4.08% to 4.18%) of tweets, respectively). CrossFit was most popular among men (14.91% (95% CI 14.52% to 15.31%)) among gym-based tweets, whereas yoga was most popular among women (26.66% (95% CI 26.03% to 27.19%)). Men mentioned engaging in higher intensity activities than women. Overall, counties with higher physical activity tweets also had lower leisure-time physical inactivity prevalence for both sexes.ConclusionsThe regional-specific and sex-specific activity patterns captured on Twitter may allow public health officials to identify changes in health behaviours at small geographical scales and to design interventions best suited for specific populations.


2013 ◽  
Vol 368 (1613) ◽  
pp. 20120356 ◽  
Author(s):  
Grant C. McDonald ◽  
Richard James ◽  
Jens Krause ◽  
Tommaso Pizzari

Sexual selection is traditionally measured at the population level, assuming that populations lack structure. However, increasing evidence undermines this approach, indicating that intrasexual competition in natural populations often displays complex patterns of spatial and temporal structure. This complexity is due in part to the degree and mechanisms of polyandry within a population, which can influence the intensity and scale of both pre- and post-copulatory sexual competition. Attempts to measure selection at the local and global scale have been made through multi-level selection approaches. However, definitions of local scale are often based on physical proximity, providing a rather coarse measure of local competition, particularly in polyandrous populations where the local scale of pre- and post-copulatory competition may differ drastically from each other. These limitations can be solved by social network analysis, which allows us to define a unique sexual environment for each member of a population: ‘local scale’ competition, therefore, becomes an emergent property of a sexual network. Here, we first propose a novel quantitative approach to measure pre- and post-copulatory sexual selection, which integrates multi-level selection with information on local scale competition derived as an emergent property of networks of sexual interactions. We then use simple simulations to illustrate the ways in which polyandry can impact estimates of sexual selection. We show that for intermediate levels of polyandry, the proposed network-based approach provides substantially more accurate measures of sexual selection than the more traditional population-level approach. We argue that the increasing availability of fine-grained behavioural datasets provides exciting new opportunities to develop network approaches to study sexual selection in complex societies.


2017 ◽  
Author(s):  
Kelsey M. Tyssowski ◽  
Ramendra N. Saha ◽  
Nicholas R. DeStefino ◽  
Jin-Hyung Cho ◽  
Richard D. Jones ◽  
...  

SUMMARYBrief and sustained neuronal activity patterns can have opposite effects on synaptic strength that both require activity-regulated gene (ARG) expression. However, whether distinct patterns of activity induce different sets of ARGs is unknown. In genome-scale experiments, we reveal that a neuron’s activity-pattern history can be predicted from the ARGs it expresses. Surprisingly, brief activity selectively induces a small subset of the ARG program that that corresponds precisely to the first of three temporal waves of genes induced by sustained activity. These first-wave genes are distinguished by an open chromatin state, proximity to rapidly activated enhancers, and a requirement for MAPK/ERK signaling for their induction. MAPK/ERK mediates rapid RNA polymerase recruitment to promoters, as well as enhancer RNA induction but not histone acetylation at enhancers. Thus, the same mechanisms that establish the multi-wave temporal structure of ARG induction also enable different sets of genes to be induced by distinct activity patterns.


Sign in / Sign up

Export Citation Format

Share Document