Application of a Van Der Waals Density Functional to Small Molecular Complexes and Solids

Author(s):  
Ikutaro Hamada
2018 ◽  
Author(s):  
Sherif Tawfik ◽  
Olexandr Isayev ◽  
Catherine Stampfl ◽  
Joseph Shapter ◽  
David Winkler ◽  
...  

Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range of benefits, but these systems have been little studied because of their experimental and computational complextiy, and because of the very large number of possible combinations of 2D building blocks. The simulation of the interface between two different 2D materials is computationally challenging due to the lattice mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and machine learning techniques in order to rapidly determine the interlayer distance between two different 2D heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our work provides an excellent proof of concept by quickly and accurately predicting a structural property (the interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


2019 ◽  
Author(s):  
Minho Kim ◽  
won june kim ◽  
Tim Gould ◽  
Eok Kyun Lee ◽  
Sébastien Lebègue ◽  
...  

<p>Materials design increasingly relies on first-principles calculations for screening important candidates and for understanding quantum mechanisms. Density functional theory (DFT) is by far the most popular first-principles approach due to its efficiency and accuracy. However, to accurately predict structures and thermodynamics, DFT must be paired with a van der Waals (vdW) dispersion correction. Therefore, such corrections have been the subject of intense scrutiny in recent years. Despite significant successes in organic molecules, no existing model can adequately cover the full range of common materials, from metals to ionic solids, hampering the applications of DFT for modern problems such as battery design. Here, we introduce a universally optimized vdW-corrected DFT method that demonstrates an unbiased reliability for predicting molecular, layered, ionic, metallic, and hybrid materials without incurring a large computational overhead. We use our method to accurately predict the intercalation potentials of layered electrode materials of a Li-ion battery system – a problem for which the existing state-of-the-art methods fail. Thus, we envisage broad use of our method in the design of chemo-physical processes of new materials.</p>


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1649
Author(s):  
Gemechis D. Degaga ◽  
Sumandeep Kaur ◽  
Ravindra Pandey ◽  
John A. Jaszczak

Vertically stacked, layered van der Waals (vdW) heterostructures offer the possibility to design materials, within a range of chemistries and structures, to possess tailored properties. Inspired by the naturally occurring mineral merelaniite, this paper studies a vdW heterostructure composed of a MoS2 monolayer and a PbS bilayer, using density functional theory. A commensurate 2D heterostructure film and the corresponding 3D periodic bulk structure are compared. The results find such a heterostructure to be stable and possess p-type semiconducting characteristics. Due to the heterostructure’s weak interlayer bonding, its carrier mobility is essentially governed by the constituent layers; the hole mobility is governed by the PbS bilayer, whereas the electron mobility is governed by the MoS2 monolayer. Furthermore, we estimate the hole mobility to be relatively high (~106 cm2V−1s−1), which can be useful for ultra-fast devices at the nanoscale.


RSC Advances ◽  
2018 ◽  
Vol 8 (34) ◽  
pp. 18889-18895 ◽  
Author(s):  
Biao Wang ◽  
Xukai Luo ◽  
Junli Chang ◽  
Xiaorui Chen ◽  
Hongkuan Yuan ◽  
...  

In this work, we employ hybrid density functional theory to investigate HfS2-based van der Waals (vdW) heterojunctions for highly efficient photovoltaic and photocatalytic applications.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2349 ◽  
Author(s):  
Wei-Hua Wang ◽  
Wen-Ling Feng ◽  
Wen-Liang Wang ◽  
Ping Li

Both sulfuric acid (H2SO4) and nitrous oxide (N2O) play a central role in the atmospheric chemistry in regulating the global environment and climate changes. In this study, the interaction behavior between H2SO4 and N2O before and after electron capture has been explored using the density functional theory (DFT) method as well as molecular dynamics simulation. The intermolecular interactions have been characterized by atoms in molecules (AIM), natural bond orbital (NBO), and reduced density gradient (RDG) analyses, respectively. It was found that H2SO4 and N2O can form two transient molecular complexes via intermolecular H-bonds within a certain timescale. However, two molecular complexes can be transformed into OH radical, N2, and HSO4− species upon electron capture, providing an alternative formation source of OH radical in the atmosphere. Expectedly, the present findings not only can provide new insights into the transformation behavior of H2SO4 and N2O, but also can enable us to better understand the potential role of the free electron in driving the proceeding of the relevant reactions in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document