Investigation of Adaptive Weight Quantization in Application for Convolutional Neuromorphic System Using Gated Schottky Diode

2019 ◽  
Author(s):  
D. Kwon ◽  
S. Lim ◽  
J.-H. Bae ◽  
S.-T. Lee ◽  
H. Kim ◽  
...  
Author(s):  
Rose Emergo ◽  
Steve Brockett ◽  
Pat Hamilton

Abstract A single power amplifier-duplexer device was submitted by a customer for analysis. The device was initially considered passing when tested against the production test. However, further electrical testing suggested that the device was stuck in a single power mode for a particular frequency band at cold temperatures only. This paper outlines the systematic isolation of a parasitic Schottky diode formed by a base contactcollector punch through process defect that pulled down the input of a NOR gate leading to the incorrect logic state. Note that this parasitic Schottky diode is parallel to the basecollector junction. It was observed that the logic failure only manifested at colder temperatures because the base contact only slightly diffused into the collector layer. Since the difference in the turn-on voltages between the base-collector junction and the parasitic Schottky diode increases with decreasing temperature, the effect of the parasitic diode is only noticeable at lower temperatures.


Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


Ceramist ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 113-114
Author(s):  
Jae Hyeon Nam ◽  
◽  
Hye Yeon Jang ◽  
Tae Hyeon Kim ◽  
Byungjin Cho ◽  
...  

Author(s):  
Chuljun Lee ◽  
Jaeun Lee ◽  
Myungjun Kim ◽  
Yubin Song ◽  
Geonhui Han ◽  
...  

1990 ◽  
Vol 26 (7) ◽  
pp. 487 ◽  
Author(s):  
S. Loualiche ◽  
A. le Corre ◽  
A. Ginudi ◽  
L. Henry ◽  
C. Vaudry ◽  
...  
Keyword(s):  

2021 ◽  
Vol 17 (4) ◽  
pp. 1-26
Author(s):  
Md Musabbir Adnan ◽  
Sagarvarma Sayyaparaju ◽  
Samuel D. Brown ◽  
Mst Shamim Ara Shawkat ◽  
Catherine D. Schuman ◽  
...  

Spiking neural networks (SNN) offer a power efficient, biologically plausible learning paradigm by encoding information into spikes. The discovery of the memristor has accelerated the progress of spiking neuromorphic systems, as the intrinsic plasticity of the device makes it an ideal candidate to mimic a biological synapse. Despite providing a nanoscale form factor, non-volatility, and low-power operation, memristors suffer from device-level non-idealities, which impact system-level performance. To address these issues, this article presents a memristive crossbar-based neuromorphic system using unsupervised learning with twin-memristor synapses, fully digital pulse width modulated spike-timing-dependent plasticity, and homeostasis neurons. The implemented single-layer SNN was applied to a pattern-recognition task of classifying handwritten-digits. The performance of the system was analyzed by varying design parameters such as number of training epochs, neurons, and capacitors. Furthermore, the impact of memristor device non-idealities, such as device-switching mismatch, aging, failure, and process variations, were investigated and the resilience of the proposed system was demonstrated.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1199
Author(s):  
Hojeong Ryu ◽  
Sungjun Kim

This study presents conductance modulation in a Pt/TiO2/HfAlOx/TiN resistive memory device in the compliance region for neuromorphic system applications. First, the chemical and material characteristics of the atomic-layer-deposited films were verified by X-ray photoelectron spectroscopy depth profiling. The low-resistance state was effectively controlled by the compliance current, and the high-resistance state was adjusted by the reset stop voltage. Stable endurance and retention in bipolar resistive switching were achieved. When a compliance current of 1 mA was imposed, only gradual switching was observed in the reset process. Self-compliance was used after an abrupt set transition to achieve a gradual set process. Finally, 10 cycles of long-term potentiation and depression were obtained in the compliance current region for neuromorphic system applications.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Sanjay Kumar ◽  
Soumen Singha ◽  
Rajkumar Jana ◽  
RITUPARNA MONDAL ◽  
Partha Pratim Bag ◽  
...  

Herein, we report the crystal structure, supramolecular structure, electronic transport property and optoelectronic behaviour of a co-crystal made of tetrabromoterephthalic acid (TBTA) and quinoxaline (QUIN) (1:1). The sample has been...


Sign in / Sign up

Export Citation Format

Share Document