scholarly journals Examining the Value of Monte Carlo Simulation for Project Time Management

Author(s):  
Goran Avlijas

Research Question: This paper investigates whether the Monte Carlo simulation can be widely used as a practicable method for the analysis of the risks that impact project duration. Motivation: The main goal was to explore the use of the Monte Carlo simulation for project time management, and shed some light on the key benefits and drawbacks of this method. The paper reviewed the existing literature considering traditional use of the Monte Carlo for quantitative project risk analysis (such as Kwak & Ingall, 2007; Hulett, 2017) and elaborated the issue by suggesting potential improvements in terms of method modification for schedule management, such as event chain methodology proposed by Agarwal & Virine (2017). Another goal was to examine the capability of user-friendly software to provide project managers with some of these benefits. Idea: The core idea of this paper was to evaluate the value of the Monte Carlo method for project time and schedule management, by matching traditional foundations with modern techniques. Data: The paper used the secondary data extracted from relevant literature and project examples. A literature review reveals how the application of the Monte Carlo simulation evolved as a project management tool, along with specific benefits and concerns for its application. Tools: A detailed application of the Monte Carlo in predicting project duration is provided, and the applicability and viability of the method are proven through a case demonstration. Following the presentation of a practical example and discussion of the main features, some limitations and potential improvements to the Monte Carlo method are suggested. Findings: Even with the existence of certain limitations, the Monte Carlo simulation remains the primary method for quantitative analysis of project risks. Despite the Monte Carlo having been found to be applicable, adaptable and predictive of total project duration, it is found to be insufficiently used by practitioners. Contribution: The paper urges the need for research on successful diffusion of the Monte Carlo simulation and helps practitioners to understand the adaptability of the Monte Carlo simulation as a tool for risk quantification and its use for effective duration planning of their projects.  

2020 ◽  
Vol 41 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Ricardo Hideaki Miyajima ◽  
Paulo Torres Fenner ◽  
Gislaine Cristina Batistela ◽  
Danilo Simões

The processing of Eucalyptus logs is a stage that follows the full tree system in mechanized forest harvesting, commonly performed by grapple saw. Therefore, this activity presents some associated uncertainties, especially regarding technical and silvicultural factors that can affect productivity and production costs. To get around this problem, Monte Carlo simulation can be applied, or rather a technique that allows to measure the probabilities of values from factors that are under conditions of uncertainties, to which probability distributions are attributed. The objective of this study was to apply the Monte Carlo method for determining the probabilistic technical-economical coefficients of log processing using two different grapple saw models. Field data were obtained from an area of forest planted with Eucalyptus, located in the State of São Paulo, Brazil. For the technical analysis, the time study protocol was applied by the method of continuous reading of the operational cycle elements, which resulted in production. As for the estimated cost of programmed hour, the applied methods were recommended by the Food and Agriculture Organization of the United Nations. The incorporation of the uncertainties was carried out by applying the Monte Carlo simulation method, by which 100,000 random values were generated. The results showed that the crane empty movement is the operational element that most impacts the total time for processing the logs; the variables that most influence the productivity are specific to each grapple saw model; the difference of USD 0.04 m3 in production costs was observed between processors with gripping area of 0.58 m2 and 0.85 m2. The Monte Carlo method proved to be an applicable tool for mechanized wood harvesting for presenting a range of probability of occurrences for the operational elements and for the production cost.


2020 ◽  
Vol 10 (12) ◽  
pp. 4229 ◽  
Author(s):  
Alexander Heilmeier ◽  
Michael Graf ◽  
Johannes Betz ◽  
Markus Lienkamp

Applying an optimal race strategy is a decisive factor in achieving the best possible result in a motorsport race. This mainly implies timing the pit stops perfectly and choosing the optimal tire compounds. Strategy engineers use race simulations to assess the effects of different strategic decisions (e.g., early vs. late pit stop) on the race result before and during a race. However, in reality, races rarely run as planned and are often decided by random events, for example, accidents that cause safety car phases. Besides, the course of a race is affected by many smaller probabilistic influences, for example, variability in the lap times. Consequently, these events and influences should be modeled within the race simulation if real races are to be simulated, and a robust race strategy is to be determined. Therefore, this paper presents how state of the art and new approaches can be combined to modeling the most important probabilistic influences on motorsport races—accidents and failures, full course yellow and safety car phases, the drivers’ starting performance, and variability in lap times and pit stop durations. The modeling is done using customized probability distributions as well as a novel “ghost” car approach, which allows the realistic consideration of the effect of safety cars within the race simulation. The interaction of all influences is evaluated based on the Monte Carlo method. The results demonstrate the validity of the models and show how Monte Carlo simulation enables assessing the robustness of race strategies. Knowing the robustness improves the basis for a reasonable determination of race strategies by strategy engineers.


2019 ◽  
Vol 222 ◽  
pp. 02012
Author(s):  
Oleg Kuznetsov ◽  
Viktor Chepurnov ◽  
Albina Gurskaya ◽  
Mikhail Dolgopolov ◽  
Sali Radzhapov

To construct beta converters with maximum efficiency it is necessary to carry out the theoretical calculation in order to determine their optimal parameters - the geometry of the structure, the thickness of the deposition of the radioisotope layer, the depth and the width of the p-n junction, and others. To date, many different theoretical models and calculations methods had been proposed. There are fairly simple theoretical models based on the Bethe-Bloch formula and the calculation of the rate of generation of electron-hole pairs, and on calculations by equivalent circuits. Also, the Monte-Carlo method is used for theoretical modeling of beta converters. This paper explores beta converter optimization using the Monte-Carlo method. The purpose of the study is to conduct Monte-Carlo simulation of the beta converter to determine its optimal parameters.


Author(s):  
Jakub Valihrach ◽  
Petr Konečný

Exit Condition for Probabilistic Assessment Using Monte Carlo Method This paper introduces a condition used to exit a probabilistic assessment using the Monte Carlo simulation, and to evaluate it with regard to the relationship between the computed estimate of the probability of failure and the target design probability. The estimation of probability of failure is treated as a random variable, considering its variance that is dependent on the number of performed Monte Carlo simulation steps. After theoretical derivation of the decision condition, it is tested numerically with regard to its accuracy and computational efficiency. The condition is suitable for optimization design using the Monte Carlo method.


2016 ◽  
pp. 29-44 ◽  
Author(s):  
Aleksandar Baumgertel ◽  
Nada Dragovic ◽  
Tijana Vulevic

Projects for the regulation of torrent basins carry various unforeseen adverse effects that may result in breached deadlines, increased costs, a reduction of quality etc. The paper presents the basic characteristics and most frequent risks associated with erosion control. Furthermore, it provides an overview of risk management through its basic stages - starting from risk identification and risk analysis to risk responses, including the methods used for risk analysis. As a part of quantitative methods for risk analysis, the Monte Carlo method is presented as the one most frequently used in simulations. The Monte Carlo method is a stochastic simulation method consisting of the following stages: the identification of criterion and relevant variables, the allocation of probability for relevant variables, the determination of correlation coefficient among relevant variables, simulation execution and result analysis. This method was applied in the analysis of the total cost of the project for the basin regulation of the Dumaca River in order to determine the funding that would be used as a backup in case of unforeseen events with a negative impact. The project for the regulation of the Dumaca River includes basin regulation in the form of complex flow profile and the lining of zones where necessary in terms of stability. The total cost is presented as a sum of costs of all works (preliminary works, earthworks, masonry works, concrete works and finishing works). The Monte Carlo simulation for cost analysis is carried out using the Oracle Crystal Ball software with its basic steps described in the paper. A sum of funding needed as a financial backup in case of unforeseen events with negative effects is obtained as the simulated total cost of the project.


2007 ◽  
Vol 06 (03n04) ◽  
pp. 253-256
Author(s):  
L. V. GAVRILENKO ◽  
V. YA. ALESHKIN ◽  
A. A. DUBINOV

The impurity breakdown was simulated in numerical calculations. The distribution function for an electron in the electric field was calculated using the Monte-Carlo method. The electron concentration in the impurity ground state and in the first subband was determined by solving the rate equations. It was found out that a population inversion between the 1s-level and the bottom of the first subband is likely to arise. The requirements for the population inversion to occur were determined.


2002 ◽  
Vol 124 (3) ◽  
pp. 575-583 ◽  
Author(s):  
Hedong Zhang ◽  
Yasunaga Mitsuya ◽  
Maiko Yamada

Spreading characteristics of molecularly thin lubricant on a grooved surface have been studied numerically by Monte Carlo simulations and compared with measurements obtained by perfluoropolyether (PFPE) thin film spreading on a solid surface with minute grooves. In the simulations, by incorporating the interactions between molecules and the side surfaces of a groove, the Monte Carlo method based on the Ising model was extended to the case of a surface with grooves and applied to simulate the spreading of non-polar lubricant inside a groove. Compared with the spreading on a smooth surface, lubricant spreads rapidly inside a groove, indicating an acceleration of the spreading along the groove. In the experiments, lubricant spreading on a surface with groove-shaped textures was measured by making use of the phenomenon in which diffracted light decreases or vanishes in the lubricant-covered region. Based on the results showing lubricant spreading predominantly along the groove, the accelerating effect obtained in the simulations is well confirmed by the measurements.


Author(s):  
Rian Ordila

Inventory management in Office Stationery needs (ATK) is instrumental in supporting administrative activities. Not terinvetaris well, resulting in the use of goods is not optimal and increase spending on this ATK. For that required a system that can manage this ATK supplies. so that in the prediction of ATK inventory can coordinate and minimize expenditure of STMIK Hang Tuah Pekanbaru expenditure. The data obtained in this research is ATK At High School of Information and Computer Management (STMIK) Hang Tuah Pekanbaru sourced from Head of Equipment Section such as paper type A4 and F4, Paperclip, Map and Printer Ink. ATK is always experiencing shortage or also excess needs. With the Monte Carlo Method, STMIK Hang Tuah Pekanbaru will be able to determine the Pattern of ATK Supplies requirement in STMIK Hang Tuah Pekanbaru and the method can give a decision in determining the pattern of ATK request that will be requested to the employee. The result of the experiment of this method is to obtain the average number of procurement requests and the average number of procurement. Estimates of the Monte Carlo simulation strategic plan that has been done will yield an estimated information on the average amount of procurement as 16 packs and the estimated average monthly expenditure of Rp 21,333.- With the amount of calculations obtained then the Office Stationery to be purchased can be estimated and inventory can be provided to meet the demand for campus needs in 2018


Author(s):  
Dian Cyntia Dewi ◽  
S Sumijan ◽  
Gunadi Widi Nurcahyo

Roses are one of the most popular types of plants in the community. The sale of roses at the flower shop of 5 siblings is increasingly in demand. Identifying the increase in sales is important in analyzing sales progress. At the present time the seller can only see a manual increase in sales that are most in demand. This study aims to determine predictions of the increase in sales of rose flowers with a monte carlo simulation accurately and accurately. The data that will be processed in this study in the last 2 years, namely 2018 and 2019, rose plants obtained at the 5 Brothers Flower Shop in Solok City. There are several types of roses in the predicted sales level. Then the data will be converted into the probability distribution into cumulative frequency and followed by generating random numbers so that they can determine random numbers. Next, we will group the boundary intervals of the random numbers that have been obtained and continue with the simulation process so that the simulation results and percentage accuracy are obtained using the Monte Carlo method. The results of this study on data processing from 2019 to 2020 have an accuracy of 90%. So this research is very appropriate in identifying the increase in sales for the following year. The design of this system determines the amount of increased sales of goods using the monte carlo method in a flower shop of 5 siblings. Monte Carlo simulations can be used to identify specific sales increases. The results obtained are quite accurate using the Monte Carlo method.


1978 ◽  
Vol 22 ◽  
pp. 343-356 ◽  
Author(s):  
R. P. Gardner ◽  
J. M. Doster

A review of the application of the Monte Carlo, fundamental parameters method to XRF fluorescence analysis for the reduction of matrix effects is made. The analytical solutions arising from theoretical equations are given along with the restrictive assumptions that are necessary to this approach. The extensions of the fundamental parameters method by the Monte Carlo simulation to practical situations that require much less restrictive assumptions are outlined. The average angle approach to the use of the analytical solutions is investigated by comparison with the Monte Carlo method. Future extensions of the fundamental parameters method by the Monte Carlo approach are discussed.


Sign in / Sign up

Export Citation Format

Share Document