STUDY ON IMPACT LOAD RESPONSE OF THE PC SLEEPER FOR RAIL JOINT USING THREE-DIMENSIONAL NUMERICAL ANALYSIS MODEL

Author(s):  
Shintaro Minoura ◽  
Tsutomu Watanabe ◽  
Kodai Matsuoka ◽  
Hiroshi Yamane
2012 ◽  
Vol 446-449 ◽  
pp. 1922-1926
Author(s):  
Chang Zhi Zhu ◽  
Xing Lian Zheng

Based on a project, a numerical analysis model was established by the finite difference program and the process of the deep excavation and support was simulated by computer, the distribution of the horizontal displacement and settlement of the top of slope of the slope soil were obtained. The simulation result was consistent with the test results. It shows that the method of numerical analysis can be used to the simulation of the excavation and support of Deep Foundation Pit, and it will provide the basis for the design and construction of practice project.


2013 ◽  
Vol 275-277 ◽  
pp. 229-237 ◽  
Author(s):  
Lin Hui Yang ◽  
Rong Xiao ◽  
Xian Wu Ji ◽  
Hong Nan Li ◽  
Tong Sun

Considering transmission tower-line system coupling vibration ,construct a three dimensional finite element nonlinear analysis model for 500KV Shanghai to Xuzhou transmission line project.Execute Dynamic response analysis of transmission tower-line system under broken wire impact with SAP2000.The results show that :broken wire influence on the reaction of transmission tower-line system displacement and internal force can not be ignored ;influence on the reaction of transmission tower-line system displacement and internal force caused by ground wire broken is less while that of conductor is significant,peak value of a stem internal force can be as much as 2 times initial axial force ;the more wires are broken,the vibration response of transmission tower-line system is greater, the safety degree is lower;when it comes to internal force,there is significant difference between consider broken wire load as impact load and as static load,dynamic effects cannot be ignored.


Author(s):  
Emre Bulut ◽  
Gökhan Sevilgen ◽  
Ferdi Eşiyok ◽  
Ferruh Öztürk ◽  
Tuğçe Turan Abi

2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


Author(s):  
Athanasios Donas ◽  
Ioannis Famelis ◽  
Peter C Chu ◽  
George Galanis

The aim of this paper is to present an application of high-order numerical analysis methods to a simulation system that models the movement of a cylindrical-shaped object (mine, projectile, etc.) in a marine environment and in general in fluids with important applications in Naval operations. More specifically, an alternative methodology is proposed for the dynamics of the Navy’s three-dimensional mine impact burial prediction model, Impact35/vortex, based on the Dormand–Prince Runge–Kutta fifth-order and the singly diagonally implicit Runge–Kutta fifth-order methods. The main aim is to improve the time efficiency of the system, while keeping the deviation levels of the final results, derived from the standard and the proposed methodology, low.


2021 ◽  
Vol 13 (11) ◽  
pp. 6188
Author(s):  
Sungwan Son ◽  
Choon-Man Jang

For students, who spend most of their time in school classrooms, it is important to maintain indoor air quality (IAQ) to ensure a comfortable and healthy life. Recently, the ventilation performance for indoor air quality in elementary schools has emerged as an important social issue due to the increase in the number of days of continuous high concentrations of particulate matter. Three-dimensional numerical analysis has been introduced to evaluate the indoor airflow according to the installation location of return diffusers. Considering the possibility of the cross-infection of infectious diseases between students due to the direction of airflow in the classroom, the airflow angles of the average respiratory height range of elementary school students, between 1.0 and 1.5 m, are analyzed. Throughout the numerical analysis inside the classroom, it is found that the floor return system reduces the indoor horizontal airflow that causes cross-infection among students by 20% compared to the upper return systems. Air ventilation performance is also analyzed in detail using the results of numerical simulation, including streamlines, temperature and the age of air.


Sign in / Sign up

Export Citation Format

Share Document