scholarly journals Wideband Microstrip Dipole Antenna Design for WLAN/WiMAX Applications

2019 ◽  
Vol 8 (2) ◽  
pp. 59-62
Author(s):  
A. Sondas

Recently, microstrip antennas are preferred in all areas of wireless communication, due to their advantages such as low volume coverage, light weight, surface compatibility, high cost requirements and easy production etc. The main disadvantage of these antennas is their narrow band performance (~11%). In the literature, there are some wideband microstrip antenna designs. These broadband characteristics are obtained by changing the antenna geometry or by adding new parasitic patches to the antenna elements. In this study, a classical wideband microstrip dipole antenna (MDA) design which can be used in WLAN/WiMAX applications (covering the bands 2.4–2.5 GHz and 2.5–3.5 GHz) is introduced. The proposed antenna has a pair of twisted strip which are placed asymmetrically near the feed of the dipole element with a length of 52 mm (~λ/2). Also a pair of square loop elements is placed on a sublayer. The proposed MDA has a resonance between 2.06-3.72 GHz with a bandwidth of 57%. The antenna has a directive radiation pattern with a gain of 6.49-3.98 dBi.

2018 ◽  
Vol 10 (2) ◽  
pp. 15-21
Author(s):  
Aprinal Adila Asril ◽  
Lifwarda Lifwarda ◽  
Yul Antonisfia

Microstrip antennas are very concerned shapes and sizes. Can be viewed in terms of simple materials, shapes, sizes and dimensions smaller antennae, the price of production is cheaper and able to provide a reasonably good performance, in addition to having many advantages, the microstrip antenna also has its drawbacks one of which is a narrow bandwidth. In this research will be designed a microstrip antenna bowtie which works at a frequency of 5.2 GHz which has a size of 68mm x 33mm groundplane. For the length and width of 33mm x 13mm patch. This antenna is designed on a printed cicuit board (PCB) FR4 epoxy with a dielectric constant of 4.7 and has a thickness of 1,6mm. This bowtie microstrip antenna design using IE3D software. This antenna has been simulated using IE3D software showed its resonance frequency is 5.270 GHz with a return loss -23 595 dB bandwidth of 230 MHz, VSWR 1,142, unidirectional radiation pattern and impedance 43,919Ω. The results of which have been successfully fabricated antenna with a resonant frequency of 5.21 GHz with a return loss -16.813 dB bandwidth of 79 MHz, VSWR 1.368, unidirectional radiation pattern, impedance 43,546Ω and HPBW 105 °.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Imen Ben Trad ◽  
Jean Marie Floc’h ◽  
Hatem Rmili ◽  
M’hamed Drissi ◽  
Fethi Choubani

A planar printed dipole antenna with reflectors and directors, able to steer its radiation pattern in different directions, is proposed for telecommunication applications. Starting from a dual-beam printed dipole antenna achieved by combining two elementary dipoles back to back, and by loading four PIN diodes, three modes of reconfigurable radiation patterns are achieved at the frequency 2.56 GHz thanks to switches states. A prototype of the structure was realized and characterized; an efficiency of 75% is obtained. Simulation and measured results of the results are presented and discussed.


2011 ◽  
Vol 143-144 ◽  
pp. 32-36
Author(s):  
Su Ling Wang ◽  
Ya Ting Gan ◽  
Guo Dong Wang

Microstrip Antennas have many applications in various communication systems. A new configuration of microstrip antenna is proposed in this paper. The microstrip antenna has two radiation ports. Through changing the radiation intensity of the two ports, the proposed structure breaks the balance of the radiation of the microstrip antenna therefore the radiation pattern would be changed corresponsively. Theory analysis is carried out based on microstrip antenna theory. Both analysis and simulation show that the new configuration can realize the radiation pattern controlled and the theory analysis agreed very well with simulation.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001078-001080
Author(s):  
Deepukumar Nair ◽  
Glenn Oliver ◽  
Jim Parisi

Organic coverlays are required to protect microstrip circuits in most applications. The presence of coverlay can potentially influence the performance of microstrip antennas. This paper describes the qualification of polyimide based coverlays for microstrip antennas both in 900 MHz and 2.50 GHz frequency bands. An Inverted F-shaped antenna fabricated on FR-4 dielectric is used as the test vehicle and two different coverlay materials are tested with respect to key parameters like resonant frequency, S11 bandwidth, antenna gain, frequency detuning, and radiation pattern. The data presented in this paper clearly indicates polyimide materials are well suited to cover microstrip antenna circuits with minimal impact on performance.


2016 ◽  
Vol 78 (5-9) ◽  
Author(s):  
Muhammad Fauzan Edy Purnomo ◽  
Hadi Suyono ◽  
Panca Mudjirahardjo ◽  
Rini Nur Hasanah

The circularly polarized (CP) microstrip antennas, both of singly- and doubly-fed types, possess inherent limitation in gain, impedance and axial-ratio bandwidths. These limitations are caused mainly by the natural resonance of the patch antenna which has a high unloaded Q-factor and the frequency-dependent excitation of two degenerative modes (TM01 and TM10) when using a single feed. Many applications which require circular polarization, large bandwidth, and good performance, especially in the field of wireless communication, are still difficult to be designed by using antenna software. Some consideration to take will include the application target and design specification, the materials to be used, and the method to choose (formula, numerical analysis, etc). This paper explains and analyzes the singly-fed microstrip antenna with circular polarization and large bandwidth. This singly-fed type of microstrip antenna provides certain advantage of requiring no external circular polarizer, e.g. the 900 hybrid, as it only needs to apply some perturbation or modification to a patch radiator with a standard geometry. The design of CP and large-bandwidth microstrip antenna is done gradually, by firstly truncating one tip, then truncating the whole three tips, and finally modifying it into a pentagonal patch structure and adding an air-gap to obtain larger bandwidths of impedance, gain and axial ratio. The last one antenna structure results in a novelty because it is a rare design of antenna which includes all types of bandwidth (impedance, gain, and axial ratio) being simultaneously larger than the origin antenna. The resulted characteristic performance of the 1-tip (one-tip) antenna shows respectively 1.9% of impedance bandwidth, 3.1% of gain bandwidth, and 0.45% of axial-ratio bandwidth. For the 3-tip (three-tip) step, the resulted bandwidths of respectively impedance, gain, and axial ratio are 1.7%, 3.3% and 0.5%. The pentagonal structure resulted in the bandwith values of 15.67%, 52.16% and 4.11% respectively for impedance, gain, and axial ratio. 


2021 ◽  
Vol 8 (2) ◽  
pp. 47-50
Author(s):  
Nail Alaoui ◽  
Aicha Djalab ◽  
Lakhdar Bouhamla ◽  
Abdellah Azouze ◽  
Rania Ibtissam Benmelouka ◽  
...  

The paper at hand discusses a novel method of miniaturization of antenna design using metamaterials. We suggest a novel method to improve frequency characteristics while reducing antenna size. This method is based on the connection of this element resonant two split rings resonator. The resonant frequency, return loss, bandwidth, radiation pattern, gain, directivity, electromagnetic field, and current supplied by the proposed antenna are the parameters addressed in this study. CST software generates all simulation results.


2021 ◽  
Vol 2 (3) ◽  
pp. 123-127
Author(s):  
Vivekanadam B

Inefficient utilization of licensed spectrum bands and overcrowding of unlicensed bands are caused due to the spectrum shortage and growing demand for wireless communication. The wireless spectrum is burdened due to the host centric traditional approaches for data detection and recovery in the IP-based networks that. The service or data is retrieved from the service provider through a new routing path every time the mobile service requester initiates a request. The vacant licensed channels are utilized appropriately enabling opportunistic and efficient band usage of the spectrum using Cognitive Radio (CR) technology. Wireless communication with low cost, compact antenna element, high gain, wideband and low profile can be performed using patch antenna. Patch is a significant aspect of antenna design. The antenna design parameters are understood by varying the patch. A good return loss can be achieved by enhancing the radiation pattern on changing the patch dimensions. High Frequency Structure Simulator (HFSS) is used for simulation and analysis of the circular patch antenna. The return loss, radiation efficiency, Voltage Standing Wave Ratio (VSWR) and radiation pattern of the antenna are analyzed.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jia Zhu ◽  
Senhao Zhang ◽  
Ning Yi ◽  
Chaoyun Song ◽  
Donghai Qiu ◽  
...  

AbstractAs the key component of wireless data transmission and powering, stretchable antennas play an indispensable role in flexible/stretchable electronics. However, they often suffer from frequency detuning upon mechanical deformations; thus, their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive. Here, a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability. The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting, whereas the rapid changing resonance frequency with deformations allows for wireless sensing. The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter (input power of − 3 dBm) efficiently (i.e., the receiving power higher than − 100 dBm over a distance of 100 m) on human bodies even upon 25% stretching. The flexibility in structural engineering combined with the coupled mechanical–electromagnetic simulations, provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.


Sign in / Sign up

Export Citation Format

Share Document