scholarly journals Soft Bigram distance for names matching

2021 ◽  
Vol 7 ◽  
pp. e465
Author(s):  
Mohammed Hadwan ◽  
Mohammed A. Al-Hagery ◽  
Maher Al-Sanabani ◽  
Salah Al-Hagree

Background Bi-gram distance (BI-DIST) is a recent approach to measure the distance between two strings that have an important role in a wide range of applications in various areas. The importance of BI-DIST is due to its representational and computational efficiency, which has led to extensive research to further enhance its efficiency. However, developing an algorithm that can measure the distance of strings accurately and efficiently has posed a major challenge to many developers. Consequently, this research aims to design an algorithm that can match the names accurately. BI-DIST distance is considered the best orthographic measure for names identification; nevertheless, it lacks a distance scale between the name bigrams. Methods In this research, the Soft Bigram Distance (Soft-Bidist) measure is proposed. It is an extension of BI-DIST by softening the scale of comparison among the name Bigrams for improving the name matching. Different datasets are used to demonstrate the efficiency of the proposed method. Results The results show that Soft-Bidist outperforms the compared algorithms using different name matching datasets.

Author(s):  
I’Shea Boyd ◽  
Mohammad Fazelpour

Abstract The periodic cellular materials are comprised of repeatable unit cells. Due to outstanding effective properties of the periodic cellular materials such as high flexibility or high stiffness at low relative density, they have a wide range of applications in lightweight structures, crushing energy absorption, compliant structures, among others. Advancement in additive manufacturing has led to opportunities for making complex unit cells. A recent approach introduced four unit cell design guidelines and verified them through numerical simulation and user studies. The unit cell design guidelines aim to guide designers to re-design the shape or topology of a unit cell for a desired structural behavior. While the guidelines were identified as ideation tools, the effectiveness of the guidelines as ideation tools has not been fully investigated. To evaluate the effectiveness of the guidelines as ideation tools, four objective metrics have been considered: novelty, variety, quality, and quantity. The results of this study reveal that the unit cell design guidelines can be considered as ideation tools. The guidelines are effective in aiding engineers in creating novel unit cells with improved shear flexibility while maintaining the effective shear modulus.


2010 ◽  
Vol 67 (10) ◽  
pp. 3238-3252 ◽  
Author(s):  
Hua Zhang ◽  
Feng Zhang ◽  
Qiang Fu ◽  
Zhongping Shen ◽  
Peng Lu

Abstract The δ-two- and four-stream combination approximations, which use a source function from the two-stream approximations and evaluate intensities in the four-stream directions, are formulated for the calculation of diffuse actinic fluxes. The accuracy and efficiency of the three computational techniques—the δ-two-stream approximations, the δ-two- and four-stream combination approximations based on various two-stream approaches, and the δ-four-stream approximation—have been investigated. The diffuse actinic fluxes are examined by considering molecular, aerosol, haze, and cloud scattering over a wide range of solar zenith angles, optical depths, and surface albedos. In view of the overall accuracy and computational efficiency, the δ-two- and four-stream combination method based on the quadrature scheme appears to be well suited to radiative transfer calculations involving photodissociation processes.


Author(s):  
E. Karkalou ◽  
C. Stentoumis ◽  
G. Karras

The demand for 3D models of various scales and precisions is strong for a wide range of applications, among which cultural heritage recording is particularly important and challenging. In this context, dense image matching is a fundamental task for processes which involve image-based reconstruction of 3D models. Despite the existence of commercial software, the need for complete and accurate results under different conditions, as well as for computational efficiency under a variety of hardware, has kept image-matching algorithms as one of the most active research topics. Semi-global matching (SGM) is among the most popular optimization algorithms due to its accuracy, computational efficiency, and simplicity. A challenging aspect in SGM implementation is the determination of smoothness constraints, i.e. penalties P1, P2 for disparity changes and discontinuities. In fact, penalty adjustment is needed for every particular stereo-pair and cost computation. In this work, a novel formulation of <i>self-adjusting penalties</i> is proposed: <i>SGM penalties can be estimated solely from the statistical properties of the initial disparity space image</i>. The proposed method of self-adjusting penalties (SGM-SAP) is evaluated using typical cost functions on stereo-pairs from the recent Middlebury dataset of interior scenes, as well as from the EPFL Herz-Jesu architectural scenes. Results are competitive against the original SGM estimates. The significant aspects of self-adjusting penalties are: (i) the time-consuming tuning process is avoided; (ii) SGM can be used in image collections with limited number of stereo-pairs; and (iii) no heuristic user intervention is needed.


2019 ◽  
Author(s):  
◽  
Paulius Bucinskas

Environmental vibration generated by sources such as rail lines, road traffic and construction work is a serious concern, especially in the urban environment. It leads to annoyance of the exposed population, creating uncomfortable living and working spaces. Thus, prediction and mitigation of these effects is an important research area, investigated by an increasing number of engineers and researchers. In this regard, computational models are especially useful. They enable the prediction of environmental vibration levels in the planning stages of a new project, reducing or, ideally, completely removing the need for in-situ investigations. Currently available numerical approaches are highly capable and can be used to model the complex cases encountered in the urban environment. However, the largest drawback of these approaches is the long computational times needed to obtain the solution, thus limiting their usage for real applications. The thesis aims to create environmental vibration prediction tools, with particular interest in their computational efficiency. This way, the created methodologies could be easier applicable to a wider audience. Modelling of the vibration propagation through soil, in most cases, is the most time consuming task. Thus, the thesis mostly focuses on this part of the system. A semi-analytical soil modelling approach was chosen to model the soil, using a Thomson-Haskell transfer matrix method. The method is advantageous, due to the analytical formulation of the soil, which does not require the discretization of the full soil domain and incorporates the infinite nature of the soil. The semi-analytical method is coupled to the finite element method, where the soil is accounted for using the semi-analytical approach, while the external structures can be modelled with finite elements. This way, the computational efficiency of the semi-analytical approach is combined with the modelling freedom of the finite elements method, allowing the application of the created model for a wide range of application cases. The thesis investigates a number of modelling cases that are commonly encountered when analysing dynamic soil–structure interaction and vibration propagation through soil. A railway bridge structure is analysed using lumped-parameter models to obtain a solution in the time domain. The work presents a novel lumped-parameter model fitting technique that is needed to obtain a numerically stable solution. Further, the semi-analytical soil model is used to analyse cases commonly encountered in the urban environment. For that purpose, various configurations of soil interacting with structure are tested, such as: rigid blocks, pile foundations, railway tracks, embedded structures, and cavities inside the soil. The proposed modelling methods are validated by comparison with other numerical methods. Very good agreement is found, demonstrating the high accuracy and the reduced computational effort of the proposed modelling approaches. A novel numerical method for predicting railway-induced vibrations is also proposed. The method utilizes the semi-analytical soil model formulated in both moving and fixed frames of reference. This way, it is possible to model the railway track and the vehicle in a moving frame of reference, while the nearby structures are formulated in a fixed frame of reference. The approach offers a flexible and numerically stable approach of modelling the full vibration propagation path, using a single-step solution procedure.


Author(s):  
Joško Deur ◽  
Milan Milutinović ◽  
Vladimir Ivanović ◽  
H. Eric Tseng

The paper proposes a dynamic model of an automotive dry dual clutch system, which comprises submodels of a lever-based electromechanical actuator and a dual clutch assembly. The model is developed by using the bond graph approach, and it can be used for clutch design, analysis, and control tasks. Special attention is devoted to modeling of friction, compliance, and lever geometry effects, as they are the ones that predominantly determine the accuracy of clutch static curve description and computational efficiency of the model. Several custom-designed test rigs are utilized for the purpose of collecting the experimental data needed for model parameterization and validation. Experimental validation demonstrates a good modeling accuracy for a wide range of operating parameters.


2009 ◽  
Vol 20 (06) ◽  
pp. 1047-1068 ◽  
Author(s):  
MANOLIS CHRISTODOULAKIS ◽  
GERHARD BREY

Approximate pattern matching has a wide range of applications and, depending on the type of approximation, there exist numerous algorithms for solving it. In this article we focus on texts which originate from OCRed documents, whose errors quite often have a particular form and are far from being random errors. We introduce a new variant of the edit distance metric, where apart from the traditional edit operations, two new operations are supported. The combination operation allows two or more symbols from a string x to be interpreted as a single symbol and then "matched" (or aligned) against a single symbol of a second string y. Its dual is the operation of a split, where a single symbol from x is broken down into a sequence of two or more other symbols, that can then be matched against an equal number of symbols from y. Our algorithm requires O(L) time for preprocessing, and O(mnk) time for computing the edit distance, where L is the total length of all the valid combinations/splits, m and n are the lengths of the two strings under comparison and k is an upper bound on the number of valid splits for any single symbol. The expected running time is O(mn).


Author(s):  
M Goel ◽  
R Sharma ◽  
S K Bhattacharyya ◽  
Tae-wan Kim

Herein, we present the design and development of a ‘Non-uniform Rational B-spline (NURBS)’ based iso-geometric approach for the analysis of a number of ‘Boundary Value Problems (BVPs)’ relevant in hydrodynamics. We propose a ‘Potential Function’ based ‘Boundary Element Method (BEM)’ and show that it holds the advantage of being computationally efficient over the other known numerical methods for a wide range of external flow problems. The use of NURBS is consistent, as inspired by the ‘iso-geometric analysis’, from geometric formulation for the body surface to the potential function representation to interpolation. The control parameters of NURBS are utilised and they have been explored to arrive at some preferable values and parameters for parameterization and the knot vector selection. Also, the present paper investigates the variational strength panel method, and its computational performance is analyzed in comparison with the constant strength panel method. The two variations have been considered, e.g. linear and quadratic. Finally, to illustrate the effectiveness and efficiency of the proposed NURBS based iso-geometric approach for the analysis of boundary value problems, five different problems (i.e. flow over a sphere, effect of the knot vector selection on analysis, flow over a rectangular wing section of NACA 0012 aerofoil section, performance of DTMB 4119 propeller (un-skewed), performance of DTNSDRC 4382 propeller (skewed)) are considered. The results show that in the absence of predominant viscous effects, a ‘Potential Function’ based BEM with NURBS representation performs well with very good computational efficiency and with less complexity as compared to the results available from the existing approaches and commercial software programs, i.e. low maximum errors close to 110−3 , faster convergence with even up to 75 % reduction in the number of panels and improvements in the computational efficiency up to 32.5 % even with low number of panels.


Author(s):  
Charles. Yang

All languages have exceptions alongside overarching rules and regularities. How does a young child tease them apart within just a few years of language acquisition? Drawing an economic analogy, Yang argues that just as the price of goods is determined by the balance between supply and demand, the price of linguistic productivity arises from the quantitative considerations of rules and exceptions. The learner postulates a productive rule only if it results in a more efficient organization of language, with the number of exception falling below a critical threshold. Supported by a wide range of cases with corpus evidence, the Tolerance Principle gives a unified account of many long-standing puzzles in linguistics and psychology, including why children effortlessly acquire linguistic rules that perplex otherwise capable adults. The focus on computational efficiency provides novel insight on how language interacts with the other components of cognition, and how the ability for language might have emerged during the course of human evolution.


Author(s):  
Hitesh S. Vaid ◽  
Kanwar Devesh Singh ◽  
Helen H. Lou ◽  
Daniel Chen ◽  
Peyton Richmond

Purpose – This paper aims to present a novel run time combustion zoning (RTCZ) technique based on the working principle of eddy dissipation concept (EDC) for combustion modeling. This technique selectively chooses cells in which the full reaction mechanism needs to be solved. The selection criterion is based on the concept of differentiating between combustion and the non-combustion zone. With this approach, considerable reduction in computational load and stability of the solution was observed and even the number of iterations required to achieve a stable solution was significantly reduced. Design/methodology/approach – Computational fluid dynamics (CFD) simulations of real life combustion problems such as industrial scale flares, fuel fired furnaces and IC engines are difficult due to the strong interactions of chemistry with turbulence as well as the wide range distribution of time and length scales. In addition, comprehensive chemical mechanisms for hydrocarbon combustion may include hundreds of species and thousands of reactions that are known in detail for only a limited number of fuels. Even with the most advanced computers, accurate simulation of these problems is not easy. Hence, the modeler needs to have strategies to either simplify the chemistry or to improve the computational efficiency. Findings – The EDC turbulence model has been widely used for treating the interaction between turbulence and the chemistry in combustion problems. In an EDC model, combustion is assumed to occur in a constant pressure reactor, with initial conditions taken as the concentration of the current species and temperature in the cell. With these assumptions, EDC solves the full or simplified reaction mechanism in all the grid cells at all iterations. Originality/value – This paper presents a novel RTCZ technique for improving the computational efficiency, when the EDC model is used in CFD modeling. Considerable reduction in computational time and stability of the solution can be achieved. It was also observed that the number of iterations required to achieve a converged solution was significantly reduced.


SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 349-374 ◽  
Author(s):  
Yang Xia ◽  
Yan Jin ◽  
Mian Chen ◽  
Kang Ping Chen

Summary Unconventional reservoirs after formation-stimulation treatments are always characterized by complex fracture networks with a wide range of length scales and topologies. Accurate simulation on multiscale discrete-fracture/matrix interaction during transient productive flows for such reservoirs is challenging but important for reservoir evaluation, optimization, and management. In this paper, we present a new enriched and explicit method for simulation on multiscale discrete-fracture/matrix modeling (EE-DFM) on structured grids to decouple the mesh conformity between the porous media and the fractures. A hybrid structured EE-DFM is first introduced, and enrichments for different scales of fracture segments are proposed to locally enrich the conventional approximation space for representing the pressure solution surrounding multiscale fracture networks. By appropriately selecting an asymptotic function to locally enrich the conventional approximation space, typical behavior of fluid flux around features in fractured media, such as discontinuities and singularities, can be directly captured. Simulation on complex multiscale fracture networks is achieved by using the superposition principle of the enrichments without introducing additional degrees of freedom and while maintaining computational efficiency. We demonstrate the accuracy and flexibility of the method by performing a series of case studies and comparing the results with simple analytical solutions as well as with conventional numerical solutions. The results of long-term well-performance case studies are used to show the good computational efficiency of the proposed method when the complexity of fracture networks is increased. The potential of the proposed method to be incorporated into the multicontinuum concept for solving nonlinear gas transport in a shale reservoir is presented. The present study provides a promising framework for real-field multiscale discrete-fracture models for unconventional-reservoir simulations.


Sign in / Sign up

Export Citation Format

Share Document