scholarly journals ScaleUp: middleware for intelligent environments

2021 ◽  
Vol 7 ◽  
pp. e545
Author(s):  
Daniyal Alghazzawi ◽  
Ghadah Aldabbagh ◽  
Abdullah Saad AL-Malaise AL-Ghamdi

The development of the Internet of Things (IoT) expands to an ultra-large-scale, which provides numerous services across different domains and environments. The use of middleware eases application development by providing the necessary functional capability. This paper presents a new form of middleware for controlling smart devices installed in an intelligent environment. This new form of middleware functioned seamlessly with any manufacturer API or bespoke controller program. It acts as an all-encompassing top layer of middleware in an intelligent environment control system capable of handling numerous different types of devices simultaneously. This protected de-synchronization of data stored in clone devices. It showed that in this middleware, the clone devices were regularly synchronized with their original master such as locally stored representations were continuously updated with the known true state values.

Author(s):  
Yingying Hu ◽  
Zhongyang Li

Against the background of the growing development of the Internet of Things, this article conducts research on more efficient methods for controlling the interconnection of all things, and proposes that smart devices use the same operating platform, and the human-computer interface presents universal modular controls for manipulation, it can satisfy the requirement that one device controls several different types of controlled device simultaneously. At the same time, the interactive method uses the controlled device to actively submit control content to the control device, and discusses the human-computer interactive control method applicable to the Internet of Everything, and strives to achieve a convenient and easy-to-use human-computer control experience.


Author(s):  
Aaron Perzanowski ◽  
Jason Schultz

The smart devices that make up the Internet of Things induce consumers to cede control over the products they buy. Devices like smartphones offer real benefits, but combined with embedded software, network connectivity, microscopic sensors and large-scale data analytics, they pose serious threats to ownership and consumer welfare. From coffee makers and toys to cars and medical devices, the products we buy are defined by software. That code gives device makers an increasing degree of control over how, when, and whether those products can be used even after consumers buy them. That shift of control has profound implications for ownership.


Author(s):  
S. Gopikrishnan ◽  
P. Priakanth

Wireless sensor network (WSN) is an outdated technology that is used to monitor the physical changes in environment and take necessary actions. The advancement in WSN leads to automation in physical environment by uploading the sensed data to internet or cloud. The internet of things concept deals with the issues of making things connected to the internet as well as in a network of smart devices. IoT application development presents an enormous opportunity to reshape entire industries. According to McKinsey & Co, the merging of the physical and digital worlds via IoT could generate up to $11.1 trillion a year in economic value by 2025. Hence, the development of the web-based IoT applications will take automation research to the next level. Many authors have proposed many solutions to make internet of things possible in day-to-day life. This chapter gives an introduction about the web-based application development based on internet of things. The major objective of this chapter is to discuss and resolve the challenges in IoT to automate the real-time problems.


Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


Author(s):  
Anne Nassauer

This book provides an account of how and why routine interactions break down and how such situational breakdowns lead to protest violence and other types of surprising social outcomes. It takes a close-up look at the dynamic processes of how situations unfold and compares their role to that of motivations, strategies, and other contextual factors. The book discusses factors that can draw us into violent situations and describes how and why we make uncommon individual and collective decisions. Covering different types of surprise outcomes from protest marches and uprisings turning violent to robbers failing to rob a store at gunpoint, it shows how unfolding situations can override our motivations and strategies and how emotions and culture, as well as rational thinking, still play a part in these events. The first chapters study protest violence in Germany and the United States from 1960 until 2010, taking a detailed look at what happens between the start of a protest and the eruption of violence or its peaceful conclusion. They compare the impact of such dynamics to the role of police strategies and culture, protesters’ claims and violent motivations, the black bloc and agents provocateurs. The analysis shows how violence is triggered, what determines its intensity, and which measures can avoid its outbreak. The book explores whether we find similar situational patterns leading to surprising outcomes in other types of small- and large-scale events: uprisings turning violent, such as Ferguson in 2014 and Baltimore in 2015, and failed armed store robberies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Que ◽  
David Lukacsovich ◽  
Wenshu Luo ◽  
Csaba Földy

AbstractThe diversity reflected by >100 different neural cell types fundamentally contributes to brain function and a central idea is that neuronal identity can be inferred from genetic information. Recent large-scale transcriptomic assays seem to confirm this hypothesis, but a lack of morphological information has limited the identification of several known cell types. In this study, we used single-cell RNA-seq in morphologically identified parvalbumin interneurons (PV-INs), and studied their transcriptomic states in the morphological, physiological, and developmental domains. Overall, we find high transcriptomic similarity among PV-INs, with few genes showing divergent expression between morphologically different types. Furthermore, PV-INs show a uniform synaptic cell adhesion molecule (CAM) profile, suggesting that CAM expression in mature PV cells does not reflect wiring specificity after development. Together, our results suggest that while PV-INs differ in anatomy and in vivo activity, their continuous transcriptomic and homogenous biophysical landscapes are not predictive of these distinct identities.


IoT ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 140-162
Author(s):  
Hung Nguyen-An ◽  
Thomas Silverston ◽  
Taku Yamazaki ◽  
Takumi Miyoshi

We now use the Internet of things (IoT) in our everyday lives. The novel IoT devices collect cyber–physical data and provide information on the environment. Hence, IoT traffic will count for a major part of Internet traffic; however, its impact on the network is still widely unknown. IoT devices are prone to cyberattacks because of constrained resources or misconfigurations. It is essential to characterize IoT traffic and identify each device to monitor the IoT network and discriminate among legitimate and anomalous IoT traffic. In this study, we deployed a smart-home testbed comprising several IoT devices to study IoT traffic. We performed extensive measurement experiments using a novel IoT traffic generator tool called IoTTGen. This tool can generate traffic from multiple devices, emulating large-scale scenarios with different devices under different network conditions. We analyzed the IoT traffic properties by computing the entropy value of traffic parameters and visually observing the traffic on behavior shape graphs. We propose a new method for identifying traffic entropy-based devices, computing the entropy values of traffic features. The method relies on machine learning to classify the traffic. The proposed method succeeded in identifying devices with a performance accuracy up to 94% and is robust with unpredictable network behavior with traffic anomalies spreading in the network.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanping Long ◽  
Zhijian Liu ◽  
Jinbu Jia ◽  
Weipeng Mo ◽  
Liang Fang ◽  
...  

AbstractThe broad application of single-cell RNA profiling in plants has been hindered by the prerequisite of protoplasting that requires digesting the cell walls from different types of plant tissues. Here, we present a protoplasting-free approach, flsnRNA-seq, for large-scale full-length RNA profiling at a single-nucleus level in plants using isolated nuclei. Combined with 10x Genomics and Nanopore long-read sequencing, we validate the robustness of this approach in Arabidopsis root cells and the developing endosperm. Sequencing results demonstrate that it allows for uncovering alternative splicing and polyadenylation-related RNA isoform information at the single-cell level, which facilitates characterizing cell identities.


2020 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Miguel R. Luaces ◽  
Jesús A. Fisteus ◽  
Luis Sánchez-Fernández ◽  
Mario Munoz-Organero ◽  
Jesús Balado ◽  
...  

Providing citizens with the ability to move around in an accessible way is a requirement for all cities today. However, modeling city infrastructures so that accessible routes can be computed is a challenge because it involves collecting information from multiple, large-scale and heterogeneous data sources. In this paper, we propose and validate the architecture of an information system that creates an accessibility data model for cities by ingesting data from different types of sources and provides an application that can be used by people with different abilities to compute accessible routes. The article describes the processes that allow building a network of pedestrian infrastructures from the OpenStreetMap information (i.e., sidewalks and pedestrian crossings), improving the network with information extracted obtained from mobile-sensed LiDAR data (i.e., ramps, steps, and pedestrian crossings), detecting obstacles using volunteered information collected from the hardware sensors of the mobile devices of the citizens (i.e., ramps and steps), and detecting accessibility problems with software sensors in social networks (i.e., Twitter). The information system is validated through its application in a case study in the city of Vigo (Spain).


Sign in / Sign up

Export Citation Format

Share Document