scholarly journals Methyl jasmonate effects on sugarbeet root responses to postharvest dehydration

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11623
Author(s):  
Fernando L. Finger ◽  
John D. Eide ◽  
Abbas M. Lafta ◽  
Mohamed F.R. Khan ◽  
Munevver Dogramaci ◽  
...  

Background Sugarbeet (Beta vulgaris L.) roots are stored under conditions that cause roots to dehydrate, which increases postharvest losses. Although exogenous jasmonate applications can reduce drought stress in intact plants, their ability to alleviate the effects of dehydration in postharvest sugarbeet roots or other stored plant products is unknown. Research was conducted to determine whether jasmonate treatment could mitigate physiological responses to dehydration in postharvest sugarbeet roots. Methods Freshly harvested sugarbeet roots were treated with 10 µM methyl jasmonate (MeJA) or water and stored under dehydrating and non-dehydrating storage conditions. Changes in fresh weight, respiration rate, wound healing, leaf regrowth, and proline metabolism of treated roots were investigated throughout eight weeks in storage. Results Dehydrating storage conditions increased root weight loss, respiration rate, and proline accumulation and prevented leaf regrowth from the root crown. Under dehydrating conditions, MeJA treatment reduced root respiration rate, but only in severely dehydrated roots. MeJA treatment also hastened wound-healing, but only in the late stages of barrier formation. MeJA treatment did not impact root weight loss or proline accumulation under dehydrating conditions or leaf regrowth under non-dehydrating conditions. Both dehydration and MeJA treatment affected expression of genes involved in proline metabolism. In dehydrated roots, proline dehydrogenase expression declined 340-fold, suggesting that dehydration-induced proline accumulation was governed by reducing proline degradation. MeJA treatment altered proline biosynthetic and catabolic gene expression, with greatest effect in non-dehydrated roots. Overall, MeJA treatment alleviated physiological manifestations of dehydration stress in stored roots, although the beneficial effects were small. Postharvest jasmonate applications, therefore, are unlikely to significantly reduce dehydration-related storage losses in sugarbeet roots.

Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 285 ◽  
Author(s):  
Neda Maftoonazad ◽  
Hosahalli S. Ramaswamy

Uncertain storage conditions lead to considerable quality loss in lime fruits, which affect their consumer acceptability. Studies aimed at quantifying the kinetics of quality changes under different storage conditions are valuable for minimizing the product quality loss and improving their marketability. The objective of this study was to quantify the effect of pectin-based coating on the kinetics of quality change in stored limes fruits using a pre-established coating process. Lime fruits were immersed in the coating emulsion and then surface dried, cooled, and evaluated after storage for different times at selected temperatures (10–25 °C). Quality characteristics evaluated include physical (texture and color), chemical (ascorbic acid, pH, titrable acidity, total soluble solids), and physiological (respiration rate) properties. Results revealed that with the passage of time, the fruits showed progressive increase in shriveling or wilting and loss in green color, and higher temperatures accelerated these changes. The respiration rate in control samples reached 79, 35, and 7 mL CO2/(kg·h) after 7 days at 25 °C and 22 days at 15 and 10 °C, respectively, while those of coated samples were limited to 40, 32, and 1.06 mL CO2/(kg·h) after 11, 25, and 32 days at the same storage temperatures. Control fruits suffered 6%, 10%, and 24% weight loss following 8 days of storage at 10, 15, and 20 °C, respectively, while the losses in coated fruits were lower (2%, 4%, and 17%, respectively). A zero-order model was found appropriate for weight loss, along with a color a value and ΔE, while a first-order model was found to be better for firmness, brix to acidity ratio, ascorbic acid, and b and L values (R2 > 0.9). The Arrhenius model was suitable for temperature sensitivity of the rate constants.


2018 ◽  
Vol 81 (10) ◽  
pp. 1643-1650 ◽  
Author(s):  
HUQING YANG ◽  
XIA LI ◽  
GUOQUAN LU

ABSTRACT Because of high water loss and rot observed in postharvest sweet potato (Ipomoea batatas (L.) Lam.) roots, a carnauba wax (CW)–based nanoemulsion without or with glycerol monolaurate (CW-GML) was developed by a high-energy emulsification approach. The effects of the two coatings on decay, respiration rate, weight loss, surface color, total soluble sugar, and starch content as well as the sensory quality of sweet potato roots were investigated during storage at 20°C for 50 days. Compared with the control treatment (water) and CW coating alone, CW-GML coating exhibited higher emulsion stability and antifungal activity, and treatment resulted in a uniform and continuous coating on roots. The CW-GML and CW coatings both effectively reduced root weight loss and respiration rate and inhibited decay incidence compared with control roots during storage. The CW-GML coating showed markedly stronger inhibition of root rot than the CW coating. Both the CW-GML and CW coatings promoted an increase in root sweetness but did not negatively impact perceived flavor. The overall results demonstrate that the CW-GML coating holds great promise as an effective postharvest technology to preserve food quality and extend shelf life of sweet potato roots.


2012 ◽  
Vol 1 (3) ◽  
pp. 159 ◽  
Author(s):  
M. Moalemiyan ◽  
H. S. Ramaswamy

<p>Edible coating is a simple and inexpensive concept for extending post-harvest life of fruits and vegetables. In this study, cucumbers were coated with different pectin-based emulsions to preserve the fruit quality and extend the post harvest shelf life. The formulations consisted of pectin, beeswax, sorbitol, water, and an emulsifying agent. By monitoring the physiological and quality parameters, the coating effects on the storability of cucumber fruits at 23°C and 40% RH (display cabinet), and 12°C and 85% RH (cold room) were determined. The parameters included weight loss, respiration rate, firmness, color, soluble solids and chlorophyll content. The coating markedly reduced weight loss and respiration rate at both temperatures. In addition, the coating reduced loss of firmness, color, chlorophyll and total soluble solids, and extended the storage life of cucumber fruits at both storage conditions.</p>


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 458b-458
Author(s):  
Chien Y. Wang

Treatment of topped radishes (Raphanus sativus L., cv. Cherry Belle) with methyl jasmonate was effective in inhibiting postharvest sprouting of new leaves and the growth of roots. Radishes were trimmed to 10-mm tops and dipped in various methyl jasmonate suspensions for 3 min. After storage at 15 °C for 7 days, the growths of new leaves were 26, 22, 7, 3, and 1 mm in 0, 10–5, 10–4, 10–3, or 2 × 10–3 M methyl jasmonate-treated radishes, respectively. The lengths of root growth were also reduced by methyl jasmonate particularly at higher concentrations. These treatments also substantially reduced weight loss possibly as a secondary effect. Fumigation with methyl jasmonate vapor in enclosed containers was also effective in inhibiting the sprouting of leaves and root growth, but to a lesser extent than dipping treatments. Radishes stored at 0 °C did not show any new growth of leaves or roots, and therefore were not affected by the methyl jasmonate treatments.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 533 ◽  
Author(s):  
Jiao-jiao Ji ◽  
Qi Feng ◽  
Hai-feng Sun ◽  
Xue-jun Zhang ◽  
Xiao-xiao Li ◽  
...  

Bioactive metabolites in Codonopsis pilosula are of particular interest as an immunostimulant. Methyl jasmonate (MeJA) plays an important role in the elicitation of metabolite biosynthesis. Here, we explored the response of metabolites to MeJA elicitation in C. pilosula adventitious roots and multiple shoots. The results showed that the biomass, polysaccharide, and lobetyolin content of adventitious roots exhibited the highest increases with 100 µmol·L−1 MeJA at the 16th day of subculture, whereas the atractylenolide III (a terpenoid) content increased extremely with 50 µmol·L−1 MeJA treatment at the 7th day of subculture. In addition, the biomass and lobetyolin content significantly increased at the 4th day after treatment. Similarly, the polysaccharide and lobetyolin content increased in multiple shoots. Further identification of different metabolites responding to MeJA by 1H-NMR showed an extremely significant increase of the lobetyolinin level, which coincided with lobetyolin. Accordingly, the precursor, fatty acids, showed a highly significant decrease in their levels. Furthermore, a significant increase in β-d-fructose-butanol glycoside was detected, which was accompanied by a decrease in the sucrose level. Accordingly, the enzyme genes responsible for terpenoid and carbohydrate biosynthesis, CpUGPase, and CpPMK, were up regulated. In conclusion, MeJA promoted culture growth and accelerated bioactive metabolite accumulation by regulating the expression of the metabolite biosynthesis related genes, CpUGPase and CpPMK in C. pilosula.


2015 ◽  
Vol 1 (1) ◽  
pp. 98-105 ◽  
Author(s):  
Ghanashyam Bhandari ◽  
Bhuddhi Bahadur Achhami ◽  
Tika Bahadur Karki ◽  
Balram Bhandari ◽  
Gopal Bhandari

A survey was conducted in order to assess the losses of maize under farmers’ storage conditions in the Western hills of Nepal in 2014. The survey area included Thanapati Village Development Committee (VDC) of Gulmi, Aalamdebi VDC of Syangja, Khasauli VDC of Palpa and Baglung municipality-12, Baglung district. Primary information was collected through semi-structured questionnaires among the heterogenous groups of the farming communities. Survey revealed that about 61% respondents reported the storage pest as the major pests and about 12% respondents reported that field pests as the major pests in the western hills. Maize weevil (Sitophylus zeamais Mostsch.) and Angoumois grain moth (Sitotroga cerealella Oliv.) were found to be major storage insect pests in surveyed areas. Majority of respondents (39%) presumed on 10-20% losses during storage. Among the other biotic factors, farmers ranked insect (42%), weeds (32%) and diseases (17%) respectively. Maize storage methods had distinct among the surveyed areas compared with Baglung district to other surveyed areas. In Baglung, about (73%) farmers had stored maize in the form of grain whereas in Palpa, Gulmi and Syangja, about (77%) farmers had practice of storing maize with husk for 5-7 months. Approximately, 40% respondents were using open floor in upper stair “Aanti”as a major maize storage place in Palpa, Gulmi and Syangja whereas almost (79%) of respondents were using sacks to store shelled grains in Baglung. Hence, there is ample opportunity to reduce the storage losses of maize depending upon the existing situation.Journal of Maize Research and Development (2015) 1(1):98-105DOI: http://dx.doi.org/10.5281/zenodo.34288


2004 ◽  
Vol 10 (2) ◽  
pp. 73-77 ◽  
Author(s):  
K. Perez ◽  
J. Mercado ◽  
H. Soto-Valdez

The effect of storage temperature on the shelf life, weight loss, respiration rate and ethylene production of Hass avocado (Persea americana Mill) was studied. Two batches of green mature avocado fruits, classified as ‘‘super extra’’ were stored at 10 and 20 C (first batch) and at 7 and 25 C (second batch). The avocado shelf lives were 22, 8, 32 and 6 days at 10, 20, 7 and 25 C, respectively. Based on the data of the first assay Q10 was calculated as 2.75, with this value the predicted shelf life at 7 and 25 C were 29.8 and 4.8 days, respectively. That meant shelf life was underestimated 7 and 20% at 7 and 25 C, respectively. Weight loss was linear at both the storage temperatures, it was 4.3% in fruits at 20 C for 8 days and 3.0% at 10 C for 22 days. The maximum CO2 production at 20 C was reached during the second day of storage, while at 10 C it was reached at the 17th day (176.17 15.98 and 74.73 7.32 mL/kg h, respectively). The maximum ethylene production at 20 C was reached the second day of storage, and at 10 C the 6th day (239.06 54.55 and 28.00 8.12 mL/kg h, respectively).


Sign in / Sign up

Export Citation Format

Share Document