scholarly journals Genome-wide identification and evolution of WNK kinases in Bambusoideae and transcriptional profiling during abiotic stress in Phyllostachys edulis

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12718
Author(s):  
RongXiu Liu ◽  
Naresh Vasupalli ◽  
Dan Hou ◽  
Antony Stalin ◽  
Hantian Wei ◽  
...  

With-no-lysine (WNK) kinases play vital roles in abiotic stress response, circadian rhythms, and regulation of flowering time in rice, Arabidopsis, and Glycine max. However, there are no previous reports of WNKs in the Bambusoideae, although genome sequences are available for diploid, tetraploid, and hexaploid bamboo species. In the present study, we identified 41 WNK genes in five bamboo species and analysed gene evolution, phylogenetic relationship, physical and chemical properties, cis-elements, and conserved motifs. We predicted the structure of PeWNK proteins of moso bamboo and determined the exposed, buried, structural and functional amino acids. Real-time qPCR analysis revealed that PeWNK5, PeWNK7, PeWNK8, and PeWNK11 genes are involved in circadian rhythms. Analysis of gene expression of different organs at different developmental stages revealed that PeWNK genes are tissue-specific. Analysis of various abiotic stress transcriptome data (drought, salt, SA, and ABA) revealed significant gene expression levels in all PeWNKs except PeWNK11. In particular, PeWNK8 and PeWNK9 were significantly down- and up-regulated, respectively, after abiotic stress treatment. A co-expression network of PeWNK genes also showed that PeWNK2, PeWNK4, PeWNK7, and PeWNK8 were co-expressed with transcriptional regulators related to abiotic stress. In conclusion, our study identified the PeWNKs of moso bamboo involved in circadian rhythms and abiotic stress response. In addition, this study serves as a guide for future functional genomic studies of the WNK genes of the Bambusoideae.

2019 ◽  
Author(s):  
Mohan Singh Rajkumar ◽  
Rama Shankar ◽  
Rohini Garg ◽  
Mukesh Jain

AbstractDNA methylation is an epigenetic mark that controls gene expression in response to internal and environmental cues. In this study, we sought to understand the role of DNA methylation in response to desiccation and salinity stresses in three rice cultivars (IR64, stress-sensitive; Nagina 22, drought-tolerant and Pokkali, salinity-tolerant) via bisulphite sequencing. We identified DNA methylation patterns in different genomic/genic regions and analysed their correlation with gene expression. Methylation in CG context within gene body and methylation in CHH context in distal promoter regions were positively correlated with gene expression. However, methylation in other sequence contexts and genic regions was negatively correlated with gene expression. DNA methylation was found to be most dynamic in CHH context under stress condition(s) in the rice cultivars. The expression profiles of genes involved in de-novo methylation were correlated with methylation dynamics. Hypomethylation in Nagina 22 and hypermethylation in Pokkali in response to desiccation and salinity stress, respectively, were correlated with higher expression of abiotic stress response related genes. Our results suggest an important role of DNA methylation in abiotic stress responses in rice in cultivar-specific manner. This study provides useful resource of DNA methylomes that can be integrated with other data to understand abiotic stress response in rice.HighlightBisulphite sequencing revealed single base resolution DNA methylation, and cultivar-specific differential methylation patterns and correlation with gene expression that control desiccation and salinity stress response in the rice cultivars.


2021 ◽  
Vol 22 (23) ◽  
pp. 12917
Author(s):  
Naresh Vasupalli ◽  
Dan Hou ◽  
Rahul Mohan Singh ◽  
Hantian Wei ◽  
Long-Hai Zou ◽  
...  

Lignin biosynthesis enzymes form complexes for metabolic channelling during lignification and these enzymes also play an essential role in biotic and abiotic stress response. Cinnamyl alcohol dehydrogenase (CAD) is a vital enzyme that catalyses the reduction of aldehydes to alcohols, which is the final step in the lignin biosynthesis pathway. In the present study, we identified 49 CAD enzymes in five Bambusoideae species and analysed their phylogenetic relationships and conserved domains. Expression analysis of Moso bamboo PheCAD genes in several developmental tissues and stages revealed that among the PheCAD genes, PheCAD2 has the highest expression level and is expressed in many tissues and PheCAD1, PheCAD6, PheCAD8 and PheCAD12 were also expressed in most of the tissues studied. Co-expression analysis identified that the PheCAD2 positively correlates with most lignin biosynthesis enzymes, indicating that PheCAD2 might be the key enzyme involved in lignin biosynthesis. Further, more than 35% of the co-expressed genes with PheCADs were involved in biotic or abiotic stress responses. Abiotic stress transcriptomic data (SA, ABA, drought, and salt) analysis identified that PheCAD2, PheCAD3 and PheCAD5 genes were highly upregulated, confirming their involvement in abiotic stress response. Through yeast two-hybrid analysis, we found that PheCAD1, PheCAD2 and PheCAD8 form homo-dimers. Interestingly, BiFC and pull-down experiments identified that these enzymes form both homo- and hetero- dimers. These data suggest that PheCAD genes are involved in abiotic stress response and PheCAD2 might be a key lignin biosynthesis pathway enzyme. Moreover, this is the first report to show that three PheCAD enzymes form complexes and that the formation of PheCAD homo- and hetero- dimers might be tissue specific.


2016 ◽  
pp. pp.00035.2016 ◽  
Author(s):  
Elizabeth Kalinda Brauer ◽  
Nagib Ahsan ◽  
Renee Dale ◽  
Naohiro Kato ◽  
Alison E Coluccio ◽  
...  

2014 ◽  
Vol 78 (6) ◽  
pp. 951-963 ◽  
Author(s):  
Ananda Mustafiz ◽  
Ajit Ghosh ◽  
Amit K. Tripathi ◽  
Charanpreet Kaur ◽  
Akshay K. Ganguly ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenqing Zheng ◽  
Liang Du

Abstract Background The deubiquitinase (DUB) family constitutes a group of proteases that regulate the stability or reverse the ubiquitination of many proteins in the cell. These enzymes participate in cell-cycle regulation, cell division and differentiation, diverse physiological activities such as DNA damage repair, growth and development, and response to stress. However, limited information is available on this family of genes in woody plants. Results In the present study, 88 DUB family genes were identified in the woody model plant Populus trichocarpa, comprising 44 PtrUBP, 3 PtrUCH, 23 PtrOTU, 4 PtrMJD, and 14 PtrJAMM genes with similar domains. According to phylogenetic analysis, the PtrUBP genes were classified into 16 groups, the PtrUCH genes into two, the PtrOTU genes into eight, the PtrMJD genes into two, and the PtrJAMM genes into seven. Members of same subfamily had similar gene structure and motif distribution characteristics. Synteny analysis of the DUB family genes from P. thrchocarpa and four other plant species provided insight into the evolutionary traits of DUB genes. Expression profiles derived from previously published transcriptome data revealed distinct expression patterns of DUB genes in various tissues. On the basis of the results of analysis of promoter cis-regulatory elements, we selected 16 representative PtrUBP genes to treatment with abscisic acid, methyl jasmonate, or salicylic acid applied as a foliar spray. The majority of PtrUBP genes were upregulated in response to the phytohormone treatments, which implied that the genes play potential roles in abiotic stress response in Populus. Conclusions The results of this study broaden our understanding of the DUB family in plants. Analysis of the gene structure, conserved elements, and expression patterns of the DUB family provides a solid foundation for exploration of their specific functions in Populus and to elucidate the potential role of PtrUBP gene in abiotic stress response.


2019 ◽  
Author(s):  
Carly D. Kenkel ◽  
Veronique J.L. Mocellin ◽  
Line K. Bay

AbstractThe mechanisms resulting in the breakdown of the coral symbiosis once the process of bleaching has been initiated remain unclear. Distinguishing symbiont loss from the abiotic stress response may shed light on the cellular and molecular pathways involved in each process. This study examined physiological changes and global gene expression patterns associated with white patch syndrome (WPS) in P. lobata, which manifests in localized bleaching independent of thermal stress. In addition, a meta-analysis of global gene expression studies in other corals and anemones was used to contrast differential regulation as a result of abiotic stress from expression patterns correlated with symbiotic state. Symbiont density, chlorophyll a content, holobiont productivity, instant calcification rate, and total host protein content were uniformly reduced in WPS relative to healthy tissue. While expression patterns associated with WPS were secondary to fixed effects of source colony, specific functional enrichments suggest that the viral infection putatively giving rise to this condition affects symbiont rather than host cells. The meta-analysis revealed that expression patterns in WPS-affected tissues were significantly correlated with prior studies examining short-term thermal stress responses. This correlation was independent of symbiotic state, as the strongest correlations were found between WPS adults and both symbiotic adult and aposymbiotic coral larvae experiencing thermal stress, suggesting that the majority of expression changes reflect a non-specific stress response. Across studies, the magnitude and direction of expression change among particular functional enrichments suggests unique responses to stressor duration, and highlights unique responses to bleaching in an anemone model which engages in a non-obligate symbiosis.


Author(s):  
Geoffrey Onaga ◽  
Kerstin Wydra

Abstract This chapter provides an overview of the recent significant perspectives on molecules involved in response and tolerance to drought and salinity, the 2 major abiotic stresses affecting crop production, and highlights major molecular components identified in major cereals.


Author(s):  
Varucha Misra ◽  
A.K. Mall ◽  
M. Iqbal R. Khan ◽  
Mohammad Israil Ansari

Sign in / Sign up

Export Citation Format

Share Document