scholarly journals Nutrition of marine mesograzers: integrating feeding behavior, nutrient intake and performance of an herbivorous amphipod

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5929 ◽  
Author(s):  
Glauco B.O. Machado ◽  
Fosca P.P. Leite ◽  
Erik E. Sotka

Consumers can regulate the acquisition and use of nutrients through behavioral and physiological mechanisms. Here, we present an experimental approach that simultaneously integrates multiple nutritional traits, feeding assays, and juvenile performance to assess whether a marine herbivore (the amphipod Ampithoe valida) regulates the intake of elements (carbon and nitrogen), macronutrients (protein and non-protein) or both when offered freeze-dried tissues of seaweeds varying in nutritional content. We assessed behavioral regulation of nutrients in three ways. First, during no-choice assays, we found that amphipods ingested similar amounts of carbon, but not nitrogen, non-protein and protein, across algal diets. Second, herbivore intake rates of carbon, protein and non-protein components across no-choice assays was similar to intake rates when offered a choice of foods. Third, variation in intake rates of carbon and non-protein components among algal diets was significantly greater than was tissue content of these components, while variation in intake rates of nitrogen was significantly lower; differences in protein intake variation was equivocal. While these analytical approaches are not uniformly consistent, carbon and nitrogen seem to emerge as the nutrient components that are more strongly regulated by A. valida. Juveniles reared on single diets shown patterns of survivorship, growth and reproduction that could not be predicted by these feeding preferences, nor nutrient content. We conclude that an integrative approach that considers the intake of multiple nutrients potentially yields insights into feeding behavior and its performance consequences.

2021 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Kristina C. Backer ◽  
Heather Bortfeld

A debate over the past decade has focused on the so-called bilingual advantage—the idea that bilingual and multilingual individuals have enhanced domain-general executive functions, relative to monolinguals, due to competition-induced monitoring of both processing and representation from the task-irrelevant language(s). In this commentary, we consider a recent study by Pot, Keijzer, and de Bot (2018), which focused on the relationship between individual differences in language usage and performance on an executive function task among multilingual older adults. We discuss their approach and findings in light of a more general movement towards embracing complexity in this domain of research, including individuals’ sociocultural context and position in the lifespan. The field increasingly considers interactions between bilingualism/multilingualism and cognition, employing measures of language use well beyond the early dichotomous perspectives on language background. Moreover, new measures of bilingualism and analytical approaches are helping researchers interrogate the complexities of specific processing issues. Indeed, our review of the bilingualism/multilingualism literature confirms the increased appreciation researchers have for the range of factors—beyond whether someone speaks one, two, or more languages—that impact specific cognitive processes. Here, we highlight some of the most salient of these, and incorporate suggestions for a way forward that likewise encompasses neural perspectives on the topic.


2021 ◽  
Author(s):  
Kayla-Anne Lenferna De La Motte ◽  
Grant Schofield ◽  
Helen Kilding ◽  
Caryn Zinn

ABSTRACT Introduction Operational ration packs are the sole source of nutrition when military personnel cannot access fresh food and field kitchens due to deployment and training in remote and hostile locations. They should be light, durable, nutrient rich, and contain sufficient energy to ensure that the personnel can carry out the expected duties. The macronutrient composition of rations has remained relatively unchanged despite escalating concerns related to the health and operational readiness of personnel globally. Currently, the New Zealand Defence Force (NZDF) provides the personnel with a 24-hour ration pack. The aims of this study were to (1) analyse the nutrient content, cost, and weight of the NZDF-supplied ration pack and (2) develop and analyse an alternate ration pack. The alternate ration pack was designed with the intention of improving overall quality and macronutrient distribution ratio, to align with optimal health and performance outcomes. Materials and Methods Nutrient and weight analyses of the NZDF and alternate ration packs were conducted using nutrition analysis software Foodworks V. 10 (Xyris software). The ration packs were costed using information from the NZDF and from commercial online shopping websites (particularly Countdown supermarket and an online shop, iHerb). Data from nutrition panels were entered into Foodworks V. 10 (Xyris software). The data underlying this article will be shared on reasonable request to the corresponding author. Results The NZDF-supplied ration pack cost 37.00 NZD and contained an excessive amount of sugar (636 g or 46% total energy) and marginally insufficient protein (118.7 g or 9% total energy) to sustain physically active military personnel. Comparatively, the alternate ration pack was more costly (63.55 NZD) and contained significantly less sugar (74.6 g or 7.2% total energy) and exceeded protein (263.1 g or 26% total energy) requirements for physically active military personnel. Furthermore, the alternate ration pack was significantly lighter (0.71 kg) than the NZDF ration pack (1.4 kg). In summary, the alternate ration was nutritionally superior and lighter when compared to the currently supplied NZDF ration, but more expensive when purchased as a one-off. Conclusions This work highlights the shortcomings of currently supplied military rations packs (i.e., excessive sugar and marginally inadequate protein) and proposes a novel alternate approach to ration pack formulation. This approach would significantly reduce sugar and increase protein and fat content in military rations. Although this work indicates that the alternate approach (which would produce lighter and nutritionally superior rations) is more costly, this cost could be reduced significantly through bulk purchasing and purpose-built rations and food items. Considering these findings, field user-testing of the alternate ration pack is recommended and subsequent reformulation of guidelines for ration pack development, as appropriate.


1987 ◽  
Vol 65 (2) ◽  
pp. 463-474 ◽  
Author(s):  
J. Vargas Vargas ◽  
J. V. Craig ◽  
R. H. Hines

2021 ◽  
Vol 8 ◽  
Author(s):  
Michael Lintner ◽  
Bianca Lintner ◽  
Wolfgang Wanek ◽  
Sarina Schmidt ◽  
Nina Keul ◽  
...  

Marine carbon and nitrogen processing through microorganisms’ metabolism is an important aspect of the global element cycles. For that purpose, we used foraminifera to analyze the element turnover with different algae food sources. In the Baltic Sea, benthic foraminifera are quite common and therefore it is important to understand their metabolism. Especially, Cribroelphidium selseyense, also occurring in the Baltic Sea, has often been used for laboratory feeding experiments to test their effect on carbon or nitrogen turnover. Therefore, foraminifera were collected from the Kiel Fjord and fed with six different algal species in two qualities (freeze-dried algae vs. fresh algae, all 13C- and 15N-labeled). Also, labeled dissolved inorganic C and N compounds and glucose were offered to the foraminifera to test direct assimilation of dissolved compounds (carbon and nitrogen) from the water column. Our experiments showed that after 15 days of incubation, there were highly significant differences in isotope labeling in foraminifera fed with fresh algae and dry algae, depending on algal species. Further, different algal species led to different 13C and 15N enrichment in the studied foraminifera, highlighting a feeding preference for one diatom species and an Eustigmatophyte. A significant carbon assimilation from HCO3– was observed after 7 days of incubation. The N assimilation from NH4+ was significantly higher than for NO3– as an inorganic N source. The uptake of glucose showed a lag phase, which was often observed during past experiments, where foraminifera were in a steady state and showed no food uptake at regular intervals. These results highlight the importance of food quality on the feeding behavior and metabolic pathways for further studies of foraminiferal nutrition and nutrient cycling.


2020 ◽  
Vol 12 (10) ◽  
pp. 1644 ◽  
Author(s):  
Irene Borra-Serrano ◽  
Tom De Swaef ◽  
Paul Quataert ◽  
Jonas Aper ◽  
Aamir Saleem ◽  
...  

Close remote sensing approaches can be used for high throughput on-field phenotyping in the context of plant breeding and biological research. Data on canopy cover (CC) and canopy height (CH) and their temporal changes throughout the growing season can yield information about crop growth and performance. In the present study, sigmoid models were fitted to multi-temporal CC and CH data obtained using RGB imagery captured with a drone for a broad set of soybean genotypes. The Gompertz and Beta functions were used to fit CC and CH data, respectively. Overall, 90.4% fits for CC and 99.4% fits for CH reached an adjusted R2 > 0.70, demonstrating good performance of the models chosen. Using these growth curves, parameters including maximum absolute growth rate, early vigor, maximum height, and senescence were calculated for a collection of soybean genotypes. This information was also used to estimate seed yield and maturity (R8 stage) (adjusted R2 = 0.51 and 0.82). Combinations of parameter values were tested to identify genotypes with interesting traits. An integrative approach of fitting a curve to a multi-temporal dataset resulted in biologically interpretable parameters that were informative for relevant traits.


2019 ◽  
Vol 48 (4) ◽  
pp. 935-944 ◽  
Author(s):  
Yu Chen ◽  
Laurent Serteyn ◽  
Zhenying Wang ◽  
KangLai He ◽  
Frederic Francis

Abstract In the current context of global climate change, atmospheric carbon dioxide (CO2) concentrations are continuously rising with potential influence on plant–herbivore interactions. The effect of elevated CO2 (eCO2) on feeding behavior of corn leaf aphid, Rhopalosiphum maidis (Fitch) on barley seedlings Hordeum vulgare L. was tracked using electrical penetration graph (EPG). The nutrient content of host plant and the developmental indexes of aphids under eCO2 and ambient CO2 (aCO2) conditions were also investigated. Barley seedlings under eCO2 concentration had lower contents of crude protein and amino acids. EPG analysis showed the plants cultivated under eCO2 influenced the aphid feeding behavior, by prolonging the total pre-probation time of the aphids (wandering and locating the feeding site) and the ingestion of passive phloem sap. Moreover, fresh body weight, fecundity and intrinsic population growth rate of R. maidis was significantly decreased in eCO2 in contrast to aCO2 condition. Our findings suggested that changes in plant nutrition caused by eCO2, mediated via the herbivore host could affect insect feeding behavior and population dynamics.


2019 ◽  
Vol 48 ◽  
Author(s):  
Pedro Felipe Santana ◽  
Vicente Ribeiro Rocha Júnior ◽  
José Reinaldo Mendes Ruas ◽  
Flávio Pinto Monção ◽  
Luana Alcântara Borges ◽  
...  

1975 ◽  
Vol 34 (3) ◽  
pp. 391-396 ◽  
Author(s):  
A. W. Chan Chim Yuk ◽  
Erica F. Wheeler ◽  
Irene M. Leppington

1. Successive portions of boiled and mashed potatoes, roast pork, cooked, freeze-dried peas and ice-cream were taken in order to determine the total (sampling and experimental) error involved in the ‘duplicate analysis’ method of dietary survey.2. These samples were analysed for water, nitrogen, fat, iron and energy.3. The experimental error of the methods was also studied separately.4. The sampling and experimental errors ranged from 0.3% for water in potatoes, to 23% for Fe in ice-cream. Sampling error was significantly greater than experimental error for all nutrients studied.5. It is concluded that in reporting the results from dietary surveys, it is necessary to take account of the errors inherent even in the most precise methods.


2011 ◽  
Vol 89 (4) ◽  
pp. 1180-1192 ◽  
Author(s):  
K. S. Schwartzkopf-Genswein ◽  
D. D. Hickman ◽  
M. A. Shah ◽  
C. R. Krehbiel ◽  
B. M. A. Genswein ◽  
...  

2008 ◽  
Vol 19 (2) ◽  
pp. 553-562 ◽  
Author(s):  
Anthony Cammarato ◽  
Corey M. Dambacher ◽  
Aileen F. Knowles ◽  
William A. Kronert ◽  
Rolf Bodmer ◽  
...  

Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5(G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders.


Sign in / Sign up

Export Citation Format

Share Document