scholarly journals Steroidal glycoalkaloids fromSolanum nigrumtarget cytoskeletal proteins: anin silicoanalysis

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6012 ◽  
Author(s):  
Rumana Ahmad

BackgroundSolanum nigrum(black nightshade;S. nigrum), a member of family Solanaceae, has been endowed with a heterogeneous array of secondary metabolites of which the steroidal glycoalkaloids (SGAs) and steroidal saponins (SS) have vast potential to serve as anticancer agents. Since there has been much controversy regarding safety of use of glycoalkaloids as anticancer agents, this area has remained more or less unexplored. Cytoskeletal proteins like actin play an important role in maintaining cell shape, synchronizing cell division, cell motility, etc. and along with their accessory proteins may also serve as important therapeutic targets for potential anticancer candidates. In the present study, glycoalkaloids and saponins fromS. nigrumwere screened for their interaction and binding affinity to cytoskeletal proteins, using molecular docking.MethodsBioactivity score and Prediction of Activity Spectra for Substances (PASS) analysis were performed using softwares Molinspiration and Osiris Data Explorer respectively, to assess the feasibility of selected phytoconstituents as potential drug candidates. The results were compared with two standard reference drugs doxorubicin hydrochloride (anticancer) and tetracycline (antibiotic). Multivariate data obtained were analyzed using principal component analysis (PCA).ResultsDocking analysis revealed that the binding affinities of the phytoconstituents towards the target cytoskeletal proteins decreased in the order coronin>villin>ezrin>vimentin>gelsolin>thymosin>cofilin. Glycoalkaloid solasonine displayed the greatest binding affinity towards the target proteins followed by alpha-solanine whereas amongst the saponins, nigrumnin-I showed maximum binding affinity. PASS Analysis of the selected phytoconstituents revealed 1 to 3 violations of Lipinski’s parameters indicating the need for modification of their structure-activity relationship (SAR) for improvement of their bioactivity and bioavailability. Glycoalkaloids and saponins all had bioactivity scores between −5.0 and 0.0 with respect to various receptor proteins and target enzymes. Solanidine, solasodine and solamargine had positive values of druglikeness which indicated that these compounds have the potential for development into future anticancer drugs. Toxicity potential evaluation revealed that glycoalkaloids and saponins had no toxicity, tumorigenicity or irritant effect(s). SAR analysis revealed that the number, type and location of sugar or the substitution of hydroxyl group on alkaloid backbone had an effect on the activity and that the presence of α-L-rhamnopyranose sugar at C-2 was critical for a compound to exhibit anticancer activity.ConclusionThe present study revealed some cytoskeletal target(s) forS. nigrumphytoconstituents by docking analysis that have not been previously reported and thus warrant further investigations bothin vitroandin vivo.

2006 ◽  
Vol 70 (3) ◽  
pp. 729-754 ◽  
Author(s):  
Yu-Ling Shih ◽  
Lawrence Rothfield

SUMMARY In recent years it has been shown that bacteria contain a number of cytoskeletal structures. The bacterial cytoplasmic elements include homologs of the three major types of eukaryotic cytoskeletal proteins (actin, tubulin, and intermediate filament proteins) and a fourth group, the MinD-ParA group, that appears to be unique to bacteria. The cytoskeletal structures play important roles in cell division, cell polarity, cell shape regulation, plasmid partition, and other functions. The proteins self-assemble into filamentous structures in vitro and form intracellular ordered structures in vivo. In addition, there are a number of filamentous bacterial elements that may turn out to be cytoskeletal in nature. This review attempts to summarize and integrate the in vivo and in vitro aspects of these systems and to evaluate the probable future directions of this active research field.


2021 ◽  
Vol 22 (7) ◽  
pp. 3676
Author(s):  
Adelina Lombrea ◽  
Alexandra Denisa Scurtu ◽  
Stefana Avram ◽  
Ioana Zinuca Pavel ◽  
Māris Turks ◽  
...  

Clinical trials have evidenced that several natural compounds, belonging to the phytochemical classes of alkaloids, terpenes, phenols and flavonoids, are effective for the management of various types of cancer. Latest research has proven that natural products and their semisynthetic variants may serve as a starting point for new drug candidates with a diversity of biological and pharmacological activities, designed to improve bioavailability, overcome cellular resistance, and enhance therapeutic efficacy. This review was designed to bring an update regarding the anticancer potential of betulonic acid and its semisynthetic derivatives. Chemical derivative structures of betulonic acid including amide, thiol, and piperidine groups, exert an amplification of the in vitro anticancer potential of betulonic acid. With the need for more mechanistic and in vivo data, some derivatives of betulonic acids may represent promising anticancer agents.


2021 ◽  
Vol 12 (1) ◽  
pp. 47-55
Author(s):  
Galuh Wening Permatasari ◽  
Didik Huswo Utomo ◽  
Dian Laila Purwaningroom ◽  
Djoko Soeatmadji

Background: These days, insulin analog production has been improved and  becoming popular. The advantages of insulin analog have been extensively reviewed in terms of effectiveness compared to human insulin. Each of the insulin analog industries has claimed their safety and efficacy based on in vivo and in vitro to overcome type 2 diabetes. Hereby, we report on the identification of highly effective analog-based insulin on structure and binding affinity computationally, to confirm its potential and give a broader point of view to insulin analog users. Methods: Five types of insulin analogs, Aspart, Glargine, Detemir, Lispro and Degludec, were analyzed. We grouped and clustered the sequence by alignment to identify the closeness and sequence similarity between samples, continued by superimposing analysis and undertaking binding affinity identification utilizing of a docking analysis approach. Results: Lispro had the least sequence similarity to other types, close to Aspart (96%) and Glargine (90.5%), while Detemir and Degludec showed 100% similarity we decide to only use Degludec for the next analysis. Furthermore, Lispro, Aspart, and Glargine exhibited structural similarity strengthened by the lack of significant difference in the RMSD data. Importantly, Aspart had the highest binding affinity score (-66.1 +/- 7.1 Kcal/mol) in the docking analysis to the insulin receptor (INSR) and similar binding site areas to human insulin.  Conclusion: Our finding revealed that the strength of insulin analogs towards insulin receptors is identic with its rapid mechanism in the human body. Keywords: computation, docking, insulin analog, sequence similarity, structure    Abstrak Latar belakang: Saat ini, produksi analog insulin meningkat dan menjadi popular. Keuntungan analog insulin telah ditinjau secara ekstensif dalam hal efektivitas dibandingkan dengan insulin manusia. Masing-masing industri analog insulin mengklaim keamanan dan kemanjurannya berdasarkan in vivo dan in vitro untuk mengatasi diabetes tipe 2. Kami melaporkan identifikasi insulin analog yang efektif berdasarkan struktur dan afinitas pengikatan secara komputasi, untuk mengonfirmasi potensi serta memberikan sudut pandang yang lebih luas kepada pengguna insulin analog. Metode: Lima jenis analog insulin, Aspart, Glargine, Detemir, Lispro, dan Degludec, dianalisis. Kami membandingkan dan mengelompokkan urutan tersebut dengan penyelarasan untuk mengidentifikasi kedekatan dan kesamaan urutan antar sampel dilanjutkan dengan superimposing analysis dan melakukan identifikasi binding affinity menggunakan pendekatan analisis docking. Hasil: Lispro memiliki kemiripan sekuen paling rendah dengan jenis lainnya, mendekati Aspart (96%) dan glargine (90,5%), sedangkan Determir dan Degludec menunjukkan kemiripan 100% sehingga kami menggunakan Degludec untuk analisis selanjutnya. Selain itu, Lispro, Aspart, dan Glargine menunjukkan kesamaan struktural yang diperkuat oleh rendahnya nilai signifikansi pada data RMSD. Perlu digarisbawahi bahwa Aspart memiliki skor afinitas pengikatan tertinggi (-66.1 +/- 7.1 kkal / mol) dalam analisis docking ke reseptor insulin (INSR) dan memiliki area pengikatan yang serupa dengan insulin manusia. Kesimpulan: Penemuan kami mengungkapkan bahwa kekuatan insulin analog sejalan dengan laju mekanismenya di dalam tubuh manusia Kata kunci: komputasi, docking, insulin analog, kemiripan sekuen, struktur


2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


2019 ◽  
Vol 22 (8) ◽  
pp. 509-520
Author(s):  
Cauê B. Scarim ◽  
Chung M. Chin

Background: In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. Objective: Current approaches to drug discovery for Chagas disease. Method: This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. Results: Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. Conclusion: There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2020 ◽  
Vol 16 ◽  
Author(s):  
Xi He ◽  
Wenjun Hu ◽  
Fanhua Meng ◽  
Xingzhou Li

Background: The broad-spectrum antiparasitic drug nitazoxanide (N) has been repositioned as a broad-spectrum antiviral drug. Nitazoxanide’s in vivo antiviral activities are mainly attributed to its metabolitetizoxanide, the deacetylation product of nitazoxanide. In reference to the pharmacokinetic profile of nitazoxanide, we proposed the hypotheses that the low plasma concentrations and the low system exposure of tizoxanide after dosing with nitazoxanide result from significant first pass effects in the liver. It was thought that this may be due to the unstable acyloxy bond of nitazoxanide. Objective: Tizoxanide prodrugs, with the more stable formamyl substituent attached to the hydroxyl group rather than the acetyl group of nitazoxanide, were designed with the thought that they might be more stable in plasma. It was anticipated that these prodrugs might be less affected by the first pass effect, which would improve plasma concentrations and system exposure of tizoxanide. Method: These O-carbamoyl tizoxanide prodrugs were synthesized and evaluated in a mouse model for pharmacokinetic (PK) properties and in an in vitro model for plasma stabilities. Results: The results indicated that the plasma concentration and the systemic exposure of tizoxanide (T) after oral administration of O-carbamoyl tizoxanide prodrugs were much greater than that produced by equimolar dosage of nitazoxanide. It was also found that the plasma concentration and the systemic exposure of tizoxanide glucuronide (TG) were much lower than that produced by nitazoxanide. Conclusion: Further analysis showed that the suitable plasma stability of O-carbamoyl tizoxanide prodrugs is the key factor in maximizing the plasma concentration and the systemic exposure of the active ingredient tizoxanide.


2020 ◽  
Vol 15 (1) ◽  
pp. 2-13 ◽  
Author(s):  
Hongyu Tao ◽  
Ling Zuo ◽  
Huanli Xu ◽  
Cong Li ◽  
Gan Qiao ◽  
...  

Background: In recent years, many novel alkaloids with anticancer activity have been found in China, and some of them are promising for developing as anticancer agents. Objective: This review aims to provide a comprehensive overview of the information about alkaloid anticancer agents disclosed in Chinese patents, and discusses their potential to be developed as anticancer drugs used clinically. Methods: Anticancer alkaloids disclosed in Chinese patents in recent 5 years were presented according to their mode of actions. Their study results published on PubMed, and SciDirect databases were presented. Results: More than one hundred anticancer alkaloids were disclosed in Chinese patents and their mode of action referred to arresting cell cycle, inhibiting protein kinases, affecting DNA synthesis and p53 expression, etc. Conclusion: Many newly found alkaloids displayed potent anticancer activity both in vitro and in vivo, and some of the anticancer alkaloids acted as protein kinase inhibitors or CDK inhibitors possess the potential for developing as novel anticancer agents.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Haidy A. Gad ◽  
Nilufar Z. Mamadalieva ◽  
Stefan Böhmdorfer ◽  
Thomas Rosenau ◽  
Gokhan Zengin ◽  
...  

The compositions of volatile components in the aerial parts of six Astragalus species, namely A. campylotrichus (Aca), A. chiwensis (Ach), A. lehmannianus (Ale), A. macronyx (Ama), A. mucidus (Amu) and A. sieversianus (Asi), were investigated using gas chromatograph-mass spectrometry (GC-MS) analysis. Ninety-seven metabolites were identified, accounting for 73.28, 87.03, 74.38, 87.93, 85.83, and 91.39% of Aca, Ach, Ale, Ama, Amu and Asi whole oils, respectively. Sylvestrene was the most predominant component in Asi, Amu and Ama, with highest concentration in Asi (64.64%). In addition, (E)-2-hexenal was present in a high percentage in both Ale and Ach (9.97 and 10.1%, respectively). GC-MS based metabolites were subjected to principal component analysis (PCA) and hierarchal cluster analysis (HCA) to explore the correlations between the six species. The PCA score plot displayed clear differentiation of all Astragalus species and a high correlation between the Amu and Ama species. The antioxidant activity was evaluated in vitro using various assays, phosphomolybdenum (PM), 2,2 diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2-azino bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing power (FRAP) and ferrous ion chelation (FIC) assays. In addition, the potential for the volatile samples to inhibit both acetyl/butyrylcholinesterases (AChE, BChE), α- amylase, α-glucosidase and tyrosinase was assessed. Most of the species showed considerable antioxidant potential in the performed assays. In the DPPH assay, Ama exhibited the maximum activity (24.12 ± 2.24 mg TE/g sample), and the volatiles from Amu exhibited the highest activity (91.54 mgTE/g oil) in the ABTS radical scavenging assay. The effect was more evident in both CUPRAC and FRAP assays, where both Ale and Ama showed the strongest activity in comparison with the other tested species (84.06, 80.28 mgTE/g oil for CUPRAC and 49.47, 49.02 mgTE/g oil for FRAP, respectively). Asi demonstrated the strongest AChE (4.55 mg GALAE/g oil) and BChE (3.61 mg GALAE/g oil) inhibitory effect. Furthermore, the best tyrosinase inhibitory potential was observed for Ale (138.42 mg KAE/g). Accordingly, Astragalus species can be utilized as promising natural sources for many medicinally important components that could be tested as drug candidates for treating illnesses such as Alzheimer’s disease, diabetes mellitus and oxidative stress-related diseases.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2505
Author(s):  
Raheem Remtulla ◽  
Sanjoy Kumar Das ◽  
Leonard A. Levin

Phosphine-borane complexes are novel chemical entities with preclinical efficacy in neuronal and ophthalmic disease models. In vitro and in vivo studies showed that the metabolites of these compounds are capable of cleaving disulfide bonds implicated in the downstream effects of axonal injury. A difficulty in using standard in silico methods for studying these drugs is that most computational tools are not designed for borane-containing compounds. Using in silico and machine learning methodologies, the absorption-distribution properties of these unique compounds were assessed. Features examined with in silico methods included cellular permeability, octanol-water partition coefficient, blood-brain barrier permeability, oral absorption and serum protein binding. The resultant neural networks demonstrated an appropriate level of accuracy and were comparable to existing in silico methodologies. Specifically, they were able to reliably predict pharmacokinetic features of known boron-containing compounds. These methods predicted that phosphine-borane compounds and their metabolites meet the necessary pharmacokinetic features for orally active drug candidates. This study showed that the combination of standard in silico predictive and machine learning models with neural networks is effective in predicting pharmacokinetic features of novel boron-containing compounds as neuroprotective drugs.


Sign in / Sign up

Export Citation Format

Share Document