scholarly journals Effect of heat-killed Streptococcus thermophilus on type 2 diabetes rats

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7117 ◽  
Author(s):  
Xiangyang Gao ◽  
Fei Wang ◽  
Peng Zhao ◽  
Rong Zhang ◽  
Qiang Zeng

Background and Aims The link between gut microbiota and type 2 diabetes (T2D) has been addressed by numerous studies. Streptococcus thermophilus from fermented milk products, has been used as a probiotic in previous research. However, whether heat-killed S. thermophilus can improve the glycemic parameters of diabetic rats remains unanswered. In this study, we evaluated the effect of heat-killed S. thermophilus on T2D model rats and the potential mechanisms of the effect. Methods Zucker diabetic fatty (ZDF) rats were used to generate a diabetic rat model induced by feeding a high-fat diet. Heat-killed S. thermophilus were orally administered to normal and diabetic rats for 12 weeks. Intestinal microbiota analysis, histology analysis, oral glucose tolerance test and measurement of inflammatory factors were performed. Results We found that heat-killed S. thermophilus treatment reduced fasting blood glucose levels and alleviated glucose intolerance and total cholesterol in diabetic ZDF rats. Additionally, heat-killed S. thermophilus increased the interleukin 10 while reducing the levels of lipopolysaccharide, interleukin 6, and tumor necrosis factor-α in diabetic ZDF rats. The heat-killed S. thermophilus treatment can normalize the structure of the intestinal and colon mucosal layer of diabetic rats. The characteristics of the gut microbiota in heat-killed S. thermophilus-treated and control rats were similar. At the genus level, the abundances of beneficial bacteria, including Ruminococcaceae, Veillonella, Coprococcus, and Bamesiella, were all significantly elevated by heat-killed S. thermophilus treatment in ZDF diabetic rats. Conclusion Our study supports the hypothesis that treatment with heat-killed S. thermophilus could effectively improve glycemic parameters in T2D model rats. In addition, the potential mechanisms underlying the protection maybe include changing the composition of gut microbiota, reinforcing the intestinal epithelial barrier and the immunity of the intestinal mucosa, decreasing the level of inflammation, and then reducing the insulin resistance.

2020 ◽  
Vol 45 (4) ◽  
pp. 397-404
Author(s):  
Tugba Gurpinar Çavuşoğlu ◽  
Ertan Darıverenli ◽  
Kamil Vural ◽  
Nuran Ekerbicer ◽  
Cevval Ulman ◽  
...  

AbstractObjectivesType 2 diabetes is a common metabolic disease and anxiety disorders are very common among diabetics. Buspirone is used in the treatment of anxiety, also having blood glucose-lowering effects. The aim of the study was to investigate the effects of buspirone on the glucose and lipid metabolism as well as vascular function in type 2 diabetic rats.MethodsA type 2-diabetic model was induced through a high-fat diet for eight weeks followed by the administration of low-dose streptozotocin (35 mg/kg, intraperitoneal) in rats. Buspirone was given at two different doses (1.5 mg/kg/d and 5 mg/kg/d) and combined with metformin (300 mg/kg/d). The fasting glucose and insulin levels, lipid profile were analyzed, and vascular response measured from the thoracic aorta was also evaluated.ResultsBoth doses of buspirone caused a significant improvement in fasting blood glucose levels. In particular, the buspirone treatment, combined with metformin, improved endothelial dysfunction and was found to be correlated with decreased nitrate/nitrite levels.ConclusionsBuspirone may be effective in the treatment of type 2 diabetes, either alone or in combination with other treatments, particularly in terms of endothelial dysfunction, inflammation and impaired blood glucose, and insulin levels.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2530 ◽  
Author(s):  
Miriam Cabello-Olmo ◽  
Maria Oneca ◽  
Paloma Torre ◽  
Neira Sainz ◽  
María J. Moreno-Aliaga ◽  
...  

Type 2 diabetes (T2D) is a complex metabolic disease, which involves a maintained hyperglycemia due to the development of an insulin resistance process. Among multiple risk factors, host intestinal microbiota has received increasing attention in T2D etiology and progression. In the present study, we have explored the effect of long-term supplementation with a non-dairy fermented food product (FFP) in Zucker Diabetic and Fatty (ZDF) rats T2D model. The supplementation with FFP induced an improvement in glucose homeostasis according to the results obtained from fasting blood glucose levels, glucose tolerance test, and pancreatic function. Importantly, a significantly reduced intestinal glucose absorption was found in the FFP-treated rats. Supplemented animals also showed a greater survival suggesting a better health status as a result of the FFP intake. Some dissimilarities have been observed in the gut microbiota population between control and FFP-treated rats, and interestingly a tendency for better cardiometabolic markers values was appreciated in this group. However, no significant differences were observed in body weight, body composition, or food intake between groups. These findings suggest that FFP induced gut microbiota modifications in ZDF rats that improved glucose metabolism and protected from T2D development.


2019 ◽  
Vol 18 (3) ◽  
pp. 247-255
Author(s):  
Sierra-Puente D. ◽  
Abadi-Alfie S. ◽  
Arakanchi-Altaled K. ◽  
Bogard-Brondo M. ◽  
García-Lascurain M. ◽  
...  

Spices such as cinnamon (Cinnamomum Spp.) have been of interest due to their phytochemical composition that exert hypoglycemic effects with potential for management of type 2 diabetes mellitus (T2DM). We summarize data from 27 manuscripts that include, one book chapter, 3 review articles, 10 randomized controlled trials, 4 systematic reviews with meta-analysis, and 9 preclinical studies. The most frequently used cinnamon variety was Cinnamomum cassia rather than the Cinnamomum zeylanicum, whereas outcomes were defined as fasting blood glucose, glycated hemoglobin, and oral glucose tolerance test. A great variability in methodology such as different doses (from 120 mg to 6 g), duration of intervention, data retrieved and use of different concomitant medication, were found to be key aspects of most of trials and systematic reviews with meta-analysis available to date. Low quality studies have been made in most cases with a lot of heterogeneity clouding significance of results. More research needs to be done in order to yield accurate evidence for evidence-based recommendations. Its use is not currently a reliable nor advisable option for the treatment of T2DM.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Henderikus E. Boersma ◽  
Robert P. van Waateringe ◽  
Melanie M. van der Klauw ◽  
Reindert Graaff ◽  
Andrew D. Paterson ◽  
...  

Abstract Background Skin autofluorescence (SAF) is a non-invasive marker of tissue accumulation of advanced glycation endproducts (AGE). Recently, we demonstrated in the general population that elevated SAF levels predict the development of type 2 diabetes (T2D), cardiovascular disease (CVD) and mortality. We evaluated whether elevated SAF may predict the development of CVD and mortality in individuals with T2D. Methods We included 2349 people with T2D, available baseline SAF measurements (measured with the AGE reader) and follow-up data from the Lifelines Cohort Study. Of them, 2071 had no clinical CVD at baseline. 60% were already diagnosed with diabetes (median duration 5, IQR 2–9 years), while 40% were detected during the baseline examination by elevated fasting blood glucose ≥7.0 mmol/l) and/or HbA1c ≥6.5% (48 mmol/mol). Results Mean (±SD) age was 57 ± 12 yrs., BMI 30.2 ± 5.4 kg/m2. 11% of participants with known T2D were treated with diet, the others used oral glucose-lowering medication, with or without insulin; 6% was using insulin alone. Participants with known T2D had higher SAF than those with newly-detected T2D (SAF Z-score 0.56 ± 0.99 vs 0.34 ± 0.89 AU, p < 0.001), which reflects a longer duration of hyperglycaemia in the former group. Participants with existing CVD and T2D had the highest SAF Z-score: 0.78 ± 1.25 AU. During a median follow-up of 3.7 yrs., 195 (7.6%) developed an atherosclerotic CVD event, while 137 (5.4%) died. SAF was strongly associated with the combined outcome of a new CVD event or mortality (OR 2.59, 95% CI 2.10–3.20, p < 0.001), as well as incidence of CVD (OR 2.05, 95% CI 1.61–2.61, p < 0.001) and death (OR 2.98, 2.25–3.94, p < 0.001) as a single outcome. In multivariable analysis for the combined endpoint, SAF retained its significance when sex, systolic blood pressure, HbA1c, total cholesterol, eGFR, as well as antihypertensive and statin medication were included. In a similar multivariable model, SAF was independently associated with mortality as a single outcome, but not with incident CVD. Conclusions Measuring SAF can assist in prediction of incident cardiovascular disease and mortality in individuals with T2D. SAF showed a stronger association with future CVD events and mortality than cholesterol or blood pressure levels.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2131
Author(s):  
Shujuan Zheng ◽  
Yanan Wang ◽  
Jingjing Fang ◽  
Ruixuan Geng ◽  
Mengjie Li ◽  
...  

Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of type 2 diabetes. However, the efficacy of OP on the advanced stage of type 2 diabetes has not been investigated, and the relationship between OP and intestinal flora has not been studied. Therefore, in this study, to explore the relieving effects of OP intake on the advanced stage of type 2 diabetes and the regulatory effects of OP on intestinal microbes, diabetic db/db mice (17-week-old) were treated with OP at the dose of 200 mg/kg for 15 weeks. We found that OP has a significant effect in decreasing fasting blood glucose levels, improving glucose tolerance, lowering the homeostasis model assessment–insulin resistance index, restoring histopathological features of tissues, and promoting hepatic protein kinase B activation in db/db mice. Notably, OP modulates gut microbiota at phylum level, increases the relative abundance of Verrucomicrobia and Deferribacteres, and decreases the relative abundance of Bacteroidetes. OP treatment increases the relative abundance of Akkermansia, as well as decreases the relative abundance of Prevotella, Odoribacter, Ruminococcus, and Parabacteroides at genus level. In conclusion, OP may ameliorate the advanced stage of type 2 diabetes through modulating the composition and function of gut microbiota. Our findings provide a promising therapeutic approach for the treatment of advanced stage type 2 diabetes.


2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199759
Author(s):  
Jiajia Tian ◽  
Yanyan Zhao ◽  
Lingling Wang ◽  
Lin Li

Aims To analyze expression of members of the Toll-like receptor (TLR)4/myeloid differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling pathway in the heart and liver in a rat model of type 2 diabetes mellitus (T2DM). Our overall goal was to understand the underlying pathophysiological mechanisms. Methods We measured fasting blood glucose (FBG) and insulin (FINS) in a rat model of T2DM. Expression of members of the TLR4/MyD88/NF-κB signaling pathway as well as downstream cytokines was investigated. Levels of mRNA and protein were assessed using quantitative real-time polymerase chain reaction and western blotting, respectively. Protein content of tissue homogenates was assessed using enzyme-linked immunosorbent assays. Results Diabetic rats had lower body weights, higher FBG, higher FINS, and higher intraperitoneal glucose tolerance than normal rats. In addition, biochemical indicators related to heart and liver function were elevated in diabetic rats compared with normal rats. TLR4 and MyD88 were involved in the occurrence of T2DM as well as T2DM-related heart and liver complications. TLR4 caused T2DM-related heart and liver complications through activation of NF-κB. Conclusions TLR4/MyD88/NF-κB signaling induces production of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1, leading to the heart- and liver-related complications of T2DM.


2018 ◽  
Vol 315 (6) ◽  
pp. E1242-E1250 ◽  
Author(s):  
Donghua Hu ◽  
Ryan D. Russell ◽  
Devika Remash ◽  
Timothy Greenaway ◽  
Stephen Rattigan ◽  
...  

The microcirculation in adipose tissue is markedly impaired in type 2 diabetes (T2D). Resistance training (RT) often increases muscle mass and promotes a favorable metabolic profile in people with T2D, even in the absence of fat loss. Whether the metabolic benefits of RT in T2D are linked to improvements in adipose tissue microvascular blood flow is unknown. Eighteen sedentary people with T2D (7 women/11 men, 52 ± 7 yr) completed 6 wk of RT. Before and after RT, overnight-fasted participants had blood sampled for clinical chemistries (glucose, insulin, lipids, HbA1c, and proinflammatory markers) and underwent an oral glucose challenge (OGC; 50 g glucose × 2 h) and a DEXA scan to assess body composition. Adipose tissue microvascular blood volume and flow were assessed at rest and 1 h post-OGC using contrast-enhanced ultrasound. RT significantly reduced fasting blood glucose ( P = 0.006), HbA1c ( P = 0.007), 2-h glucose area under the time curve post-OGC ( P = 0.014), and homeostatic model assessment of insulin resistance ( P = 0.005). This was accompanied by a small reduction in total body fat ( P = 0.002), trunk fat ( P = 0.023), and fasting triglyceride levels ( P = 0.029). Lean mass ( P = 0.003), circulating TNF-α ( P = 0.006), and soluble VCAM-1 ( P < 0.001) increased post-RT. There were no significant changes in adipose tissue microvascular blood volume or flow following RT; however those who did have a higher baseline microvascular blood flow post-RT also had lower fasting triglyceride levels ( r = −0.476, P = 0.045). The anthropometric, glycemic, and insulin-sensitizing benefits of 6 wk of RT in people with T2D are not associated with an improvement in adipose tissue microvascular responses; however, there may be an adipose tissue microvascular-linked benefit to fasting triglyceride levels.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3377
Author(s):  
Omorogieva Ojo ◽  
Xiao-Hua Wang ◽  
Osarhumwese Osaretin Ojo ◽  
Amanda Rodrigues Amorim Adegboye

The use of nutritional interventions for managing diabetes is one of the effective strategies aimed at reducing the global prevalence of the condition, which is on the rise. Almonds are the most consumed tree nut and they are known to be rich sources of protein, monounsaturated fatty acids, essential minerals, and dietary fibre. Therefore, the aim of this review was to evaluate the effects of almonds on gut microbiota, glycometabolism, and inflammatory parameters in patients with type 2 diabetes. Methods: This systematic review and meta-analysis was carried out according to the preferred reporting items for systematic review and meta-analysis (PRISMA). EBSCOhost, which encompasses the Health Sciences Research Databases; Google Scholar; EMBASE; and the reference lists of articles were searched based on population, intervention, control, outcome, and study (PICOS) framework. Searches were carried out from database inception until 1 August 2021 based on medical subject headings (MesH) and synonyms. The meta-analysis was carried out with the Review Manager (RevMan) 5.3 software. Results: Nine randomised studies were included in the systematic review and eight were used for the meta-analysis. The results would suggest that almond-based diets have significant effects in promoting the growth of short-chain fatty acid (SCFA)-producing gut microbiota. Furthermore, the meta-analysis showed that almond-based diets were effective in significantly lowering (p < 0.05) glycated haemoglobin (HbA1c) levels and body mass index (BMI) in patients with type 2 diabetes. However, it was also found that the effects of almonds were not significant (p > 0.05) in relation to fasting blood glucose, 2 h postprandial blood glucose, inflammatory markers (C-reactive protein and Tumour necrosis factor α, TNF-α), glucagon-like peptide-1 (GLP-1), homeostatic model assessment of insulin resistance (HOMA–IR), and fasting insulin. The biological mechanisms responsible for the outcomes observed in this review in relation to reduction in HbA1c and BMI may be based on the nutrient composition of almonds and the biological effects, including the high fibre content and the low glycaemic index profile. Conclusion: The findings of this systematic review and meta-analysis have shown that almond-based diets may be effective in promoting short-chain fatty acid-producing bacteria and lowering glycated haemoglobin and body mass index in patients with type 2 diabetes compared with control. However, the effects of almonds were not significant (p > 0.05) with respect to fasting blood glucose, 2 h postprandial blood glucose, inflammatory markers (C-reactive protein and TNF-α), GLP-1, HOMA–IR, and fasting insulin.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ingrid S. Surono ◽  
Ata Aditya Wardana ◽  
Priyo Waspodo ◽  
Budi Saksono ◽  
Koen Venema

Background and Objectives. The gut microbiota has been shown to be involved in the development and severity of type 2 diabetes (T2D). The aim of the present study was to test the effect of potential functional food ingredients, alone or in combination, on the gut microbiota composition in diabetic rats in a pilot study of 1 week of feeding. Methods. In a pilot study to modulate the composition of the gut microbiota, (i) native taro starch, (ii) modified taro starch, (iii) beet juice, (iv) psicose, (v) the probiotic L. plantarum IS-10506, (vi) native starch combined with beet juice, (vii) native starch to which beet juice was adsorbed, (viii) modified starch combined with beet juice, and (ix) modified starch to which beet juice was adsorbed were fed to rats in which T2D was induced with streptozotocin (STZ). After one week, the composition of the gut microbiota was evaluated by sequencing the PCR-amplified V3-V4 region of the 16S rRNA gene. Results and Conclusions. The next-generation sequencing showed that 13 microbial taxa of the gut microbiota were significantly different between groups, depending on the treatment. The results of this pilot study will be used to design a 4-week intervention study in STZ-induced T2D rats to determine the best functional food for counteracting T2D, including their effects on satiety hormones. This should ultimately lead to the development of functional foods for prediabetic and diabetic individuals.


2016 ◽  
Vol 29 (suppl 1) ◽  
pp. 3-7 ◽  
Author(s):  
Cacio Ricardo WIETZYCOSKI ◽  
João Caetano Dallegrave MARCHESINI ◽  
Sultan AL-THEMYAT ◽  
Fabiola Shons MEYER ◽  
Manoel Roberto Maciel TRINDADE

ABSTRACT Background: Type 2 Diabetes Mellitus is a multifactorial syndrome with severe complications. Oxidative stress is accepted as a causal factor of chronic complications Aim: To demonstrate alterations in oxidative stress after metabolic surgery. Methods: Twenty-four 2-day-old Wistar rats were used. In 16, Type 2 Diabetes Mellitus was induced by 100 mg/kg streptozotocin injection. The development of diabetes was confirmed after 10 weeks using an oral glucose tolerance test. Eight diabetic rats composed the diabetic surgical group; the remaining eight composed the diabetic group. Eight animals in which diabetes was not induced formed the clinical control group. The Marchesini technique was used in the diabetic surgical group. After 90 days, the rats were sacrificed, and the oxidative stress markers were measured. Results: Thiobarbituric acid reactive substances, superoxide dismutase and catalase were significantly reduced in the diabetic surgical group compared to the diabetic group. Conclusion: The duodenojejunostomy was effective in controlling the exacerbated oxidative stress present in diabetic rats.


Sign in / Sign up

Export Citation Format

Share Document