scholarly journals Complete chloroplast genomes of medicinally importantTeucriumspecies and comparative analyses with related species from Lamiaceae

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7260 ◽  
Author(s):  
Arif Khan ◽  
Sajjad Asaf ◽  
Abdul Latif Khan ◽  
Adil Khan ◽  
Ahmed Al-Harrasi ◽  
...  

Teucriumis one of the most economically and ecologically important genera in the Lamiaceae family; however, it is currently the least well understood at the plastome level. In the current study, we sequenced the complete chloroplast (cp) genomes ofT. stocksianumsubsp.stenophyllumR.A.King (TSS),T. stocksianumsubsp.stocksianumBoiss. (TS) andT. mascatenseBoiss. (TM) through next-generation sequencing and compared them with the cp genomes of related species in Lamiaceae (Ajuga reptansL.,Caryopteris mongholicaBunge,Lamium albumL.,Lamium galeobdolon(L.) Crantz, andStachys byzantinaK.Koch). The results revealed that the TSS, TS and TM cp genomes have sizes of 150,087, 150,076 and 150,499 bp, respectively. Similarly, the large single-copy (LSC) regions of TSS, TS and TM had sizes of 81,707, 81,682 and 82,075 bp, respectively. The gene contents and orders of these genomes were similar to those of other angiosperm species. However, various differences were observed at the inverted repeat (IR) junctions, and the extent of the IR expansion into ψrps19was 58 bp, 23 bp and 61 bp in TSS, TS and TM, respectively. Similarly, in all genomes, thepbsAgene was present in the LSC at varying distances from the JLA(IRa-LSC) junction. Furthermore, 89, 72, and 92 repeats were identified in the TSS, TM and TS cp genomes, respectively. The highest number of simple sequence repeats was found in TSS (128), followed by TS (127) and TM (121). Pairwise alignments of the TSS cp genome with related cp genomes showed a high degree of synteny. However, relatively lower sequence identity was observed when various coding regions were compared to those of related cp genomes. The average pairwise divergence among the complete cp genomes showed that TSS was more divergent from TM (0.018) than from TS (0.006). The current study provides valuable genomic insight into the genusTeucriumand its subspecies that may be applied to a more comprehensive study.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Tingting Zhang ◽  
Yanping Xing ◽  
Liang Xu ◽  
Guihua Bao ◽  
Zhilai Zhan ◽  
...  

Abstract Background Baitouweng is a traditional Chinese medicine with a long history of different applications. Although referred to as a single medicine, Baitouweng is actually comprised of many closely related species. It is therefore critically important to identify the different species that are utilized in these medicinal applications. Knowledge about their phylogenetic relationships can be derived from their chloroplast genomes and may provide additional insights into development of molecular markers. Methods Genomic DNA was extracted from six species of Pulsatilla and then sequenced on an Illumina HiSeq 4000. Sequences were assembled into contigs by SOAPdenovo 2.04, aligned to the reference genome using BLAST, and then manually corrected. Genome annotation was performed by the online DOGMA tool. General characteristics of the cp genomes of the six species were analyzed and compared with closely related species. Additionally, phylogenetic trees were constructed, based on single nucleotide polymorphisms (SNPs) and 51 shared protein-coding gene sequences in the cp genome among all 31 species via maximum likelihood. Results The size of cp genomes of P. chinensis (Bge.) Regel, P. chinensis (Bge.) Regel var. kissii (Mandl) S. H. Li et Y. H. Huang, P. cernua (Thunb.) Bercht. et Opiz f. plumbea J. X. Ji et Y. T. zhao, P. dahurica (Fisch.) Spreng, P. turczaninovii Kryl. et Serg, and P. cernua (Thunb.) Bercht. et Opiz. were 163,851 bp, 163,756 bp, 162,481 bp, 162,450 bp, 162,795 bp, and 162,924 bp, respectively. Each species included two inverted repeat regions, a small single-copy region, and a large single-copy region. A total of 134 genes were annotated, including 90 protein-coding genes, 36 tRNAs, and eight rRNAs across all species. In simple sequence repeat analysis, only P. dahurica was found to contain hexanucleotide repeats. A total of 26, 39, 32, 37, 32 and 43 large repeat sequences were identified in the genic regions of the six Pulsatilla species. Nucleotide diversity analysis revealed that the rpl36 gene and ccsA-ndhD region have the highest Pi value. In addition, two phylogenetic trees of the cp genomes were constructed, which laced all Pulsatilla species into one branch within Ranunculaceae. Conclusions We identified and analyzed the cp genome features of six species of P. Miller, with implications for species identification and phylogenetic analysis.



PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9132
Author(s):  
Shuilian He ◽  
Yang Yang ◽  
Ziwei Li ◽  
Xuejiao Wang ◽  
Yanbing Guo ◽  
...  

The horticulturally important genus Zantedeschia (Araceae) comprises eight species of herbaceous perennials. We sequenced, assembled and analyzed the chloroplast (cp) genomes of four species of Zantedeschia (Z. aethiopica, Z. odorata, Z. elliottiana, and Z. rehmannii) to investigate the structure of the cp genome in the genus. According to our results, the cp genome of Zantedeschia ranges in size from 169,065 bp (Z. aethiopica) to 175,906 bp (Z. elliottiana). We identified a total of 112 unique genes, including 78 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosomal RNA (rRNA) genes. Comparison of our results with cp genomes from other species in the Araceae suggests that the relatively large sizes of the Zantedeschia cp genomes may result from inverted repeats (IR) region expansion. The sampled Zantedeschia species formed a monophylogenetic clade in our phylogenetic analysis. Furthermore, the long single copy (LSC) and short single copy (SSC) regions in Zantedeschia are more divergent than the IR regions in the same genus, and non-coding regions showed generally higher divergence than coding regions. We identified a total of 410 cpSSR sites from the four Zantedeschia species studied. Genetic diversity analyses based on four polymorphic SSR markers from 134 cultivars of Zantedeschia suggested that high genetic diversity (I = 0.934; Ne = 2.371) is present in the Zantedeschia cultivars. High genetic polymorphism from the cpSSR region suggests that cpSSR could be an effective tool for genetic diversity assessment and identification of Zantedeschia varieties.



2021 ◽  
Vol 12 ◽  
Author(s):  
Vincent Okelo Wanga ◽  
Xiang Dong ◽  
Millicent Akinyi Oulo ◽  
Elijah Mbandi Mkala ◽  
Jia-Xin Yang ◽  
...  

Acanthochlamys P.C. Kao is a Chinese endemic monotypic genus, whereas XerophytaJuss. is a genus endemic to Africa mainland, Arabian Peninsula and Madagascar with ca.70 species. In this recent study, the complete chloroplast genome of Acanthochlamys bracteata was sequenced and its genome structure compared with two African Xerophyta species (Xerophyta spekei and Xerophyta viscosa) present in the NCBI database. The genomes showed a quadripartite structure with their sizes ranging from 153,843 bp to 155,498 bp, having large single-copy (LSC) and small single-copy (SSC) regions divided by a pair of inverted repeats (IR regions). The total number of genes found in A. bracteata, X. spekei and X. viscosa cp genomes are 129, 130, and 132, respectively. About 50, 29, 28 palindromic, forward and reverse repeats and 90, 59, 53 simple sequence repeats (SSRs) were found in the A. bracteata, X. spekei, and X. viscosa cp genome, respectively. Nucleotide diversity analysis in all species was 0.03501, Ka/Ks ratio average score was calculated to be 0.26, and intergeneric K2P value within the Order Pandanales was averaged to be 0.0831. Genomic characterization was undertaken by comparing the genomes of the three species of Velloziaceae and it revealed that the coding regions were more conserved than the non-coding regions. However, key variations were noted mostly at the junctions of IRs/SSC regions. Phylogenetic analysis suggests that A. bracteata species has a closer genetic relationship to the genus Xerophyta. The present study reveals the complete chloroplast genome of A. bracteata and gives a genomic comparative analysis with the African species of Xerophyta. Thus, can be useful in developing DNA markers for use in the study of genetic variabilities and evolutionary studies in Velloziaceae.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sajjad Asaf ◽  
Abdul Latif Khan ◽  
Muhammad Numan ◽  
Ahmed Al-Harrasi

AbstractAvicennia marina (family Acanthaceae) is a halotolerant woody shrub that grows wildly and cultivated in the coastal regions. Despite its importance, the species suffers from lack of genomic datasets to improve its taxonomy and phylogenetic placement across the related species. Here, we have aimed to sequence the plastid genome of A. marina and its comparison with related species in family Acanthaceae. Detailed next-generation sequencing and analysis showed a complete chloroplast genome of 150,279 bp, comprising 38.6% GC. Genome architecture is quadripartite revealing large single copy (82,522 bp), small single copy (17,523 bp), and pair of inverted repeats (25,117 bp). Furthermore, the genome contains 132 different genes, including 87 protein-coding genes, 8 rRNA, 37 tRNA genes, and 126 simple sequence repeats (122 mononucleotide, 2 dinucleotides, and 2 trinucleotides). Interestingly, about 25 forward, 15 reversed and 14 palindromic repeats were also found in the A. marina. High degree synteny was observed in the pairwise alignment with related genomes. The chloroplast genome comparative assessment showed a high degree of sequence similarity in coding regions and varying divergence in the intergenic spacers among ten Acanthaceae species. The pairwise distance showed that A. marina exhibited the highest divergence (0.084) with Justicia flava and showed lowest divergence with Aphelandra knappiae (0.059). Current genomic datasets are a valuable resource for investigating the population and evolutionary genetics of family Acanthaceae members’ specifically A. marina and related species.



Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2137 ◽  
Author(s):  
Xiang-Xiao Meng ◽  
Yan-Fang Xian ◽  
Li Xiang ◽  
Dong Zhang ◽  
Yu-Hua Shi ◽  
...  

The genus Sanguisorba, which contains about 30 species around the world and seven species in China, is the source of the medicinal plant Sanguisorba officinalis, which is commonly used as a hemostatic agent as well as to treat burns and scalds. Here we report the complete chloroplast (cp) genome sequences of four Sanguisorba species (S. officinalis, S. filiformis, S. stipulata, and S. tenuifolia var. alba). These four Sanguisorba cp genomes exhibit typical quadripartite and circular structures, and are 154,282 to 155,479 bp in length, consisting of large single-copy regions (LSC; 84,405–85,557 bp), small single-copy regions (SSC; 18,550–18,768 bp), and a pair of inverted repeats (IRs; 25,576–25,615 bp). The average GC content was ~37.24%. The four Sanguisorba cp genomes harbored 112 different genes arranged in the same order; these identical sections include 78 protein-coding genes, 30 tRNA genes, and four rRNA genes, if duplicated genes in IR regions are counted only once. A total of 39–53 long repeats and 79–91 simple sequence repeats (SSRs) were identified in the four Sanguisorba cp genomes, which provides opportunities for future studies of the population genetics of Sanguisorba medicinal plants. A phylogenetic analysis using the maximum parsimony (MP) method strongly supports a close relationship between S. officinalis and S. tenuifolia var. alba, followed by S. stipulata, and finally S. filiformis. The availability of these cp genomes provides valuable genetic information for future studies of Sanguisorba identification and provides insights into the evolution of the genus Sanguisorba.



Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 979
Author(s):  
Millicent Akinyi Oulo ◽  
Jia-Xin Yang ◽  
Xiang Dong ◽  
Vincent Okelo Wanga ◽  
Elijah Mbandi Mkala ◽  
...  

Rhipsalis baccifera is the only cactus that naturally occurs in both the New World and the Old World, and has thus drawn the attention of most researchers. The complete chloroplast (cp) genome of R. baccifera is reported here for the first time. The cp genome of R. baccifera has 122, 333 base pairs (bp), with a large single-copy (LSC) region (81,459 bp), SSC (23,531 bp) and two inverted repeat (IR) regions each 8530 bp. The genome contains 110 genes, with 73 protein-coding genes, 31 tRNAs, 4 rRNAs and 2 pseudogenes. Twelve genes have introns, with loss of introns being observed in, rpoc1clpP and rps12 genes. 49 repeat sequences and 62 simple sequence repeats (SSRs) were found in the genome. Comparative analysis with eight species of the ACPT (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae) clade of the suborder Portulacineae species, showed that R. baccifera genome has higher number of rearrangements, with a 19 gene inversion in its LSC region representing the most significant structural change in terms of its size. Inversion of the SSC region seems common in subfamily Cactoideae, and another 6 kb gene inversion between rbcL- trnM was observed in R. baccifera and Carnegiea gigantea. The IRs of R. baccifera are contracted. The phylogenetic analysis among 36 complete chloroplast genomes of Caryophyllales species and two outgroup species supported monophyly of the families of the ACPT clade. R. baccifera occupied a basal position of the family Cactaceae clade in the tree. A high number of rearrangements in this cp genome suggests a larger number mutation events in the history of evolution of R. baccifera. These results provide important tools for future work on R. baccifera and in the evolutionary studies of the suborder Portulacineae.



Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 296 ◽  
Author(s):  
Jacinta N. Munyao ◽  
Xiang Dong ◽  
Jia-Xin Yang ◽  
Elijah M. Mbandi ◽  
Vincent O. Wanga ◽  
...  

The genus Chlorophytum includes many economically important species well-known for medicinal, ornamental, and horticultural values. However, to date, few molecular genomic resources have been reported for this genus. Therefore, there is limited knowledge of phylogenetic studies, and the available chloroplast (cp) genome of Chlorophytum (C. rhizopendulum) does not provide enough information on this genus. In this study, we present genomic resources for C. comosum and C. gallabatense, which had lengths of 154,248 and 154,154 base pairs (bp), respectively. They had a pair of inverted repeats (IRa and IRb) of 26,114 and 26,254 bp each in size, separating the large single-copy (LSC) region of 84,004 and 83,686 bp from the small single-copy (SSC) region of 18,016 and 17,960 bp in C. comosum and C. gallabatense, respectively. There were 112 distinct genes in each cp genome, which were comprised of 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative analysis with five other selected species displayed a generally high level of sequence resemblance in structural organization, gene content, and arrangement. Additionally, the phylogenetic analysis confirmed the previous phylogeny and produced a phylogenetic tree with similar topology. It showed that the Chlorophytum species (C. comosum, C. gallabatense and C. rhizopendulum) were clustered together in the same clade with a closer relationship than other plants to the Anthericum ramosum. This research, therefore, presents valuable records for further molecular evolutionary and phylogenetic studies which help to fill the gap in genomic resources and resolve the taxonomic complexes of the genus.



Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 608
Author(s):  
Sang-Chul Kim ◽  
Jei-Wan Lee ◽  
Byoung-Ki Choi

In the present study, chloroplast genome sequences of four species of Symplocos (S. chinensis for. pilosa, S. prunifolia, S. coreana, and S. tanakana) from South Korea were obtained by Ion Torrent sequencing and compared with the sequences of three previously reported Symplocos chloroplast genomes from different species. The length of the Symplocos chloroplast genome ranged from 156,961 to 157,365 bp. Overall, 132 genes including 87 functional genes, 37 tRNA genes, and eight rRNA genes were identified in all Symplocos chloroplast genomes. The gene order and contents were highly similar across the seven species. The coding regions were more conserved than the non-coding regions, and the large single-copy and small single-copy regions were less conserved than the inverted repeat regions. We identified five new hotspot regions (rbcL, ycf4, psaJ, rpl22, and ycf1) that can be used as barcodes or species-specific Symplocos molecular markers. These four novel chloroplast genomes provide basic information on the plastid genome of Symplocos and enable better taxonomic characterization of this genus.



Author(s):  
Umar Rehman ◽  
Nighat Sultana ◽  
Abdullah . ◽  
Abbas Jamal ◽  
Maryam Muzaffar ◽  
...  

Family Phyllanthaceae is one of the largest segregates of the eudicot order Malpighiales and its species are herb, shrub, and tree, which are mostly distributed in tropical regions. Certain taxonomic discrepancies exist at genus and family level. Here, we report chloroplast genomes of three Phyllanthaceae species—Phyllanthus emblica, Flueggea virosa, and Leptopus cordifolius— and compare them with six others previously reported Phyllanthaceae chloroplast genomes. The species of Phyllanthaceae displayed quadripartite structure, comprising inverted repeat regions (IRa and IRb) that separate large single copy (LSC) and small single copy (SSC) regions. The length of complete chloroplast genome ranged from 154,707 bp to 161,093 bp; LSC from 83,627 bp to 89,932 bp; IRs from 23,921 bp to 27,128 bp; and SSC from 17,424 bp to 19,441 bp. Chloroplast genomes contained 111 to 112 unique genes, including 77 to 78 protein-coding, 30 transfer RNA (tRNA), and 4 ribosomal RNA (rRNA) that showed similarities in arrangement. The number of protein-coding genes varied due to deletion/pseudogenization of rps16 genes in Baccaurea ramiflora and Leptopus cordifolius. High variability was seen in number of oligonucleotide repeats while analysis of guanine-cytosine (GC) content, codon usage, amino acid frequency, simple sequence repeats analysis, synonymous and non-synonymous substitutions, and transition and transversion substitutions showed similarities in all Phyllanthaceae species. We detected a higher number of transition substitutions in the coding sequences than non-coding sequences. Moreover, the high number of transition substitutions was determined among the distantly related species in comparison to closely related species. Phylogenetic analysis shows the polyphyletic nature of the genus Phyllanthus which requires further verification. We also determined suitable polymorphic coding genes, including rpl22, ycf1, matK, ndhF, and rps15 which may be helpful for the reconstruction of the high-resolution phylogenetic tree of the family Phyllanthaceae using a large number of species in the future. Overall, the current study provides insight into chloroplast genome evolution in Phyllanthaceae.



Author(s):  
Abidina Abba ◽  
Dhafer Alzahrani ◽  
Samaila Yaradua ◽  
Enas Albokhari

Background: Comparative study of the complete chloroplast genomes of some species in the Subtribe Asclepiadeae was conducted to evaluate the variations and similarities between the species and to resolve the phylogenetic relationship within the subtribe. P. tomentosa has been used for medicinal uses in Saudi Arabia, Middle East, Africa and Brazil. It is used often in cosmetics and tanning industries, although it’s very well utilized as a traditional medicine in many civilizations.Methods: The genomes were compared using Mvista Bioinformatics tools to evaluate the inverted repeats (IR), large single copy (LSC) and small single copy (SSC) regions and also the border junctions were visualized with IR scope to express the expansion and contraction of the circular genome structure. While SSR markers were determined using the Reputer program, the genome map was done using OGDRAW (OrganellarGenomeDRAW).Result: Observed variations of the Mvista alignments is mainly at the coding regions of the sequences, while IR borders were varied at the SSC region of A. nivea genome; with ycf1 and rps19 due to evolutionary events. The genome sizes of C. procera are 166,010 bp, P. tomentosa 164,213bp, A. nivea 161,592 bp and C. wilfordii 161,180 bp. GC contents of A. nivea, C. wilfordii and P. tomentosa are 38% respectively; while C. procera is the least with 37%.; total SSR markers as well as the circular genome map were presented in this study.



Sign in / Sign up

Export Citation Format

Share Document