scholarly journals The association between evidence of a predator threat and responsiveness to alarm calls in Western Australian magpies (Cracticus tibicen dorsalis)

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7572 ◽  
Author(s):  
Annabel Silvestri ◽  
Kate Morgan ◽  
Amanda R. Ridley

Alarm calls are a widespread form of antipredator defence and being alerted to the presence of predators by the alarm calls of conspecifics is considered one of the benefits of group living. However, while social information can allow an individual to gain additional information, it can also at times be inaccurate or irrelevant. Such variation in the accuracy of social information is predicted to select for receivers to discriminate between sources of social information. In this study, we used playback experiments to determine whether Western Australian magpies (Cracticus tibicen dorsalis) respond to the predator information associated with alarm calls. Magpies were exposed to the alarm calls of two group members that differed in the threat associated with the alarm call: one call was played in the presence of a predator model while the other was not—in order to establish differences in the predator information provided by each caller. We then played back the alarm calls of the same group members in the absence of the predator model to determine whether magpies responded differently to signallers in response to the previous association between the alarm call and a predator threat. We found that receivers showed significantly greater levels of responsiveness to signallers that previously gave alarm calls in the appropriate context. Thus, the accuracy of threat-based information influenced subsequent receiver response.

2012 ◽  
Vol 58 (5) ◽  
pp. 773-780 ◽  
Author(s):  
James F. Hare ◽  
Kurtis J. Warkentin

Abstract Alarm calls are emitted by Richardson’s ground squirrels Urocitellus richardsonii in response to avian and terrestrial predators. Conspecifics detecting these calls respond with increased vigilance, promoting predator detection and evasion, but in doing so, lose time from foraging. That loss can be minimized if alarm call recipients discriminate among signalers, and weight their response accordingly. For juvenile ground squirrels, we predicted that the trade-off between foraging and vigilance could be optimized via selective response to alarm calls emitted by their own dam, and/or neighboring colony members over calls broadcast by less familiar conspecifics. Alarm calls of adult female Richardson’s ground squirrels were elicited in the field using a predator model and recorded on digital audio tape. Free-living focal juveniles were subjected to playbacks of a call of their mother, and on a separate occasion a call from either another adult female from their own colony, or an adult female from another colony. Neither immediate postural responses and escape behavior, nor the duration of vigilance manifested by juveniles differed with exposure to alarm calls of the three adult female signaler types. Thus, juveniles did not respond preferentially to alarm calls emitted by their mothers or colony members, likely reflecting the high cost of ignoring alarm signals where receivers have had limited opportunity to establish past signaler reliability.


2008 ◽  
Vol 4 (5) ◽  
pp. 472-475 ◽  
Author(s):  
Sarah Papworth ◽  
Anne-Sophie Böse ◽  
Jessica Barker ◽  
Anne Marijke Schel ◽  
Klaus Zuberbühler

Male blue monkeys ( Cercopithecus mitis stuhlmanni ) of Budongo Forest, Uganda, produce two acoustically distinct alarm calls: hacks to crowned eagles ( Stephanoaetus coronatus ) and pyows to leopards ( Panthera pardus ) and a range of other disturbances. In playback experiments, males responded to leopard growls exclusively with a series of pyows and to eagle shrieks predominantly with hacks. Responses to playbacks of these alarm call series matched the responses to the corresponding predators, suggesting that the calls conveyed something about the nature of the threat. When responding to a series of hacks, indicating an eagle, males responded predominately with hacks, but produced significantly more calls if their group members were close to the playback stimulus than far away, regardless of their own position. When responding to a series of pyows, indicating a range of disturbances, males responded with pyows, but call rates were independent of the distance of other group members. The results suggest that males took into account the degree of danger experienced by other group members.


Behaviour ◽  
2021 ◽  
pp. 1-20
Author(s):  
Estelle Meaux ◽  
Chao He ◽  
Luying Qin ◽  
Eben Goodale

Abstract Vocalizations that signal predation risk such as alarm calls provide crucial information for the survival of group-living individuals. However, alarm calling may attract the predator’s attention and, to avoid this cost, animals can opt for alternative strategies to indicate danger, such as ‘adaptive silence’, which is the cessation of vocalizations. We investigate here whether abrupt contact call cessation would provoke alarm responses, or would reinforce the signal given by an alarm call. In an aviary setting, we conducted playback experiments with a group-living passerine, the Swinhoe’s white-eye, Zosterops simplex. We found that birds did not respond to a sudden call cessation, nor did they have a stronger response to alarm calls followed by silence than to alarm calls followed by contact calls. Confirming previous work investigating contact call rate, it appears that in this species contact calls encode information about social factors but not environmental conditions.


2017 ◽  
Vol 284 (1857) ◽  
pp. 20170446 ◽  
Author(s):  
Alexandra McQueen ◽  
Annalise C. Naimo ◽  
Niki Teunissen ◽  
Robert D. Magrath ◽  
Kaspar Delhey ◽  
...  

Increased predation risk is considered a cost of having conspicuous colours, affecting the anti-predator behaviour of colourful animals. However, this is difficult to test, as individual factors often covary with colour and behaviour. We used alarm call playback and behavioural observations to assess whether individual birds adjust their response to risk according to their plumage colour. Male superb fairy-wrens ( Malurus cyaneus ) change from a dull brown to conspicuous blue plumage each year, allowing the behaviour of different coloured birds to be compared while controlling for within-individual effects. Because the timing of colour change varies among males, blue and brown birds can also be compared at the same time of year, controlling for seasonal effects on behaviour. While blue, fairy-wrens fled more often in response to alarm calls, and took longer to emerge from cover. Blue fairy-wrens also spent more time foraging in cover and being vigilant. Group members appeared to benefit from the presence of blue males, as they reduced their response to alarms, and allocated less time to sentinel behaviour when a blue male was close by. We suggest that fairy-wrens perceive themselves to be at a higher risk of predation while in conspicuous plumage and adjust their behaviour accordingly.


2019 ◽  
Vol 286 (1899) ◽  
pp. 20182945 ◽  
Author(s):  
Jessica R. McLachlan ◽  
Chaminda P. Ratnayake ◽  
Robert D. Magrath

Information about predators can mean the difference between life and death, but prey face the challenge of integrating personal information about predators with social information from the alarm calls of others. This challenge might even affect the structure of interspecific information networks: species vary in response to alarm calls, potentially because different foraging ecologies constrain the acquisition of personal information. However, the hypothesis that constrained personal information explains a greater response to alarm calls has not been experimentally tested. We used a within-species test to compare the antipredator responses of New Holland honeyeaters, Phylidonyris novaehollandiae , during contrasting foraging behaviour. Compared with perched birds, which hawk for insects and have a broad view, those foraging on flowers were slower to spot gliding model predators, showing that foraging behaviour can affect predator detection. Furthermore, nectar-foraging birds were more likely to flee to alarm call playbacks. Birds also assessed social information relevance: more distant calls, and those from another species, prompted fewer flights and slower reaction times. Overall, birds made flexible decisions about danger by integrating personal and social information, while weighing information relevance. These findings support the idea that a strategic balance of personal and social information could affect community function.


2016 ◽  
Vol 3 (2) ◽  
pp. 150639 ◽  
Author(s):  
Claudia Stephan ◽  
Klaus Zuberbühler

Male Diana monkeys produce loud and acoustically distinct alarm calls to leopards and eagles that propagate over long distances, much beyond the immediate group. Calling is often contagious, with neighbouring males responding to each other’s calls, indicating that harem males communicate both to local group members and distant competitors. Here, we tested whether male Diana monkeys responding to each other’s alarm calls discriminated familiar from unfamiliar callers in two populations in Taï Forest (Ivory Coast) and on Tiwai Island (Sierra Leone). At both sites, we found specific acoustic markers in male alarm call responses that discriminated familiar from unfamiliar callers, but response patterns were site-specific. On Tiwai Island, males responded to familiar males’ eagle alarms with ‘standard’ eagle alarm calls, whereas unfamiliar males triggered acoustically atypical eagle alarms. The opposite was found in Taï Forest where males responded to unfamiliar males’ eagle alarm calls with ‘standard’ eagle alarms, and with atypical eagle alarms to familiar males’ calls. Moreover, only Taï, but not Tiwai, males also marked familiarity with the caller in their leopard-induced alarms. We concluded that male Diana monkeys encode not only predator type but also signaller familiarity in their alarm calls, although in population-specific ways. We explain these inter-site differences in vocal behaviour in terms of differences in predation pressure and population density. We discuss the adaptive function and implications of this behaviour for the origins of acoustic flexibility in primate communication.


2005 ◽  
Vol 273 (1587) ◽  
pp. 735-740 ◽  
Author(s):  
Serge A Wich ◽  
Han de Vries

Primates give alarm calls in response to the presence of predators. In some species, such as the Thomas langur ( Presbytis thomasi ), males only emit alarm calls if there is an audience. An unanswered question is whether the audience's behaviour influences how long the male will continue his alarm calling. We tested three hypotheses that might explain the alarm calling duration of male Thomas langurs: the fatigue , group size and group member behaviour hypotheses. Fatigue and group size did not influence male alarm calling duration. We found that males only ceased calling shortly after all individuals in his group had given at least one alarm call. This shows that males keep track of and thus remember which group members have called.


2020 ◽  
Author(s):  
Nhat Quang Le ◽  
Magne Supphellen ◽  
Richard P. Bagozzi

Abstract Donation campaigns that have an unsuccessful start often trigger negative social information in the social and mass media (e.g., “few others have donated so far”). Little research exists to shed light on the effects of such information in the context of donations. Across three studies involving different causes and different channels of communication, we find harmful effects of negative social information on the willingness to donate among prevention-focused consumers but tendencies of positive effects for consumers with a promotion focus. We identify response efficacy as a mediator of the harmful effect for prevention-focused consumers. This finding suggests that social proof theory is not sufficient to explain the harmful effect of negative social information. Alternative mediators are tested and rejected. The findings imply that an effective strategy to avoid harmful effects of negative social information is to trigger a promotion focus in target group members and communicate facts about charity effectiveness.


2019 ◽  
Author(s):  
Z.A. Grieb ◽  
E.G. Ford ◽  
F.P. Manfredsson ◽  
J.S. Lonstein

SummaryProsocial interactions are essential for group-living animals and are regulated by tactile cues shared among the group members. Neurobiological mechanisms through which social touch influences prosociality and related affective behaviors are relatively unknown. Using the evolutionarily ancient mother-young dyad as a model, we hypothesized that neurobehavioral consequences of social touch involves an interaction between central oxytocin (released during social touch) and serotonin (regulating affect and neuroplasticity). New mother rats showed upregulation of numerous aspects of the oxytocin system in the midbrain dorsal raphe (DR; source of forebrain serotonin) compared to non-maternal females. Preventing this upregulation by OTR knockdown in the maternal DR elicited infanticide, reduced nursing, increased aggression, and decreased active coping behavior. OTR knockdown also decreased serotonin-immunoreactive fibers, and increased neuroplasticity-restricting perineuronal nets, in the primary somatosensory cortex. Thus, oxytocin signaling in the DR regulates mechanisms involved in serotonin-induced cortical plasticity, which refines the tactile processing underlying prosocial behaviors.


2021 ◽  
Author(s):  
Jack Thorley ◽  
Hanna Bensch ◽  
Kyle Finn ◽  
Tim Clutton-Brock ◽  
Markus Zöttl

Damaraland mole-rats (Fukomys damarensis) are usually viewed as an obligatorily group living eusocial species in which successful reproduction is dependent on reproductive altruism of closely related group members. However, the reproductive ecology of social mole-rats in their natural environment remains poorly understood and it is unclear to what extent successful reproduction is dependent on assistance from other group members. Using data from a 7-year field study of marked individuals, we show that, after dispersal from their natal group, individuals typically settled alone in new burrow systems where they enjoyed high survival rates, and often remained in good body condition for several years before finding a mate. Unlike most other eusocial or singular cooperative breeders, we found that Damaraland mole-rats reproduced successfully in pairs without helpers and experimentally formed pairs had the same reproductive success as larger established groups. Overall there was only a weak increase in reproductive success with increasing group size and no effect of group size on adult survival rates across the population. Juveniles in large groups grew faster early in life but their growth rates declined subsequently so that they eventually plateaued at a lower maximum body mass than juveniles from small groups. Taken together, our data suggest that the fitness benefits of group living to breeders are small and we suggest that extended philopatry in Damaraland mole-rats has evolved because of the high costs and constraints of dispersal rather than because of strong indirect benefits accrued through cooperative behaviour.


Sign in / Sign up

Export Citation Format

Share Document