scholarly journals Population structure ofNeisseria gonorrhoeaebased on whole genome data and its relationship with antibiotic resistance

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e806 ◽  
Author(s):  
Matthew N. Ezewudo ◽  
Sandeep J. Joseph ◽  
Santiago Castillo-Ramirez ◽  
Deborah Dean ◽  
Carlos del Rio ◽  
...  
2014 ◽  
Author(s):  
Matthew N. Ezewudo ◽  
Sandeep Joseph ◽  
Santiago Castillo-Ramirez ◽  
Deborah Dean ◽  
Carlos Del Rio ◽  
...  

Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI) of major importance. As a result of antibiotic resistance, there are now limited options for treating patients. We collected whole genome sequences and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. The population structure and evolutionary forces within the pathogen population were analyzed. Our results indicated a cosmopolitan gonoccocal population mainly made up of five subgroups. The estimated ratio of recombination to mutation (r/m=2.2) from our data set indicates an appreciable level of recombination occurring in the population. Strains with resistance phenotypes to more recent antibiotics (azithromycin and cefixime) were mostly found in two of the five population subgroups.


2014 ◽  
Author(s):  
Matthew N. Ezewudo ◽  
Sandeep Joseph ◽  
Santiago Castillo-Ramirez ◽  
Deborah Dean ◽  
Carlos Del Rio ◽  
...  

Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI) of major importance. As a result of antibiotic resistance, there are now limited options for treating patients. We collected whole genome sequences and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. The population structure and evolutionary forces within the pathogen population were analyzed. Our results indicated a cosmopolitan gonoccocal population mainly made up of five subgroups. The estimated ratio of recombination to mutation (r/m=2.2) from our data set indicates an appreciable level of recombination occurring in the population. Strains with resistance phenotypes to more recent antibiotics (azithromycin and cefixime) were mostly found in two of the five population subgroups.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1054
Author(s):  
Nalumon Thadtapong ◽  
Soraya Chaturongakul ◽  
Sunhapas Soodvilai ◽  
Padungsri Dubbs

Resistance to the last-line antibiotics against invasive Gram-negative bacterial infection is a rising concern in public health. Multidrug resistant (MDR) Acinetobacter baumannii Aci46 can resist colistin and carbapenems with a minimum inhibitory concentration of 512 µg/mL as determined by microdilution method and shows no zone of inhibition by disk diffusion method. These phenotypic characteristics prompted us to further investigate the genotypic characteristics of Aci46. Next generation sequencing was applied in this study to obtain whole genome data. We determined that Aci46 belongs to Pasture ST2 and is phylogenetically clustered with international clone (IC) II as the predominant strain in Thailand. Interestingly, Aci46 is identical to Oxford ST1962 that previously has never been isolated in Thailand. Two plasmids were identified (pAci46a and pAci46b), neither of which harbors any antibiotic resistance genes but pAci46a carries a conjugational system (type 4 secretion system or T4SS). Comparative genomics with other polymyxin and carbapenem-resistant A. baumannii strains (AC30 and R14) identified shared features such as CzcCBA, encoding a cobalt/zinc/cadmium efflux RND transporter, as well as a drug transporter with a possible role in colistin and/or carbapenem resistance in A. baumannii. Single nucleotide polymorphism (SNP) analyses against MDR ACICU strain showed three novel mutations i.e., Glu229Asp, Pro200Leu, and Ala138Thr, in the polymyxin resistance component, PmrB. Overall, this study focused on Aci46 whole genome data analysis, its correlation with antibiotic resistance phenotypes, and the presence of potential virulence associated factors.


2020 ◽  
Author(s):  
Oliver Kersten ◽  
Bastiaan Star ◽  
Deborah M. Leigh ◽  
Tycho Anker-Nilssen ◽  
Hallvard Strøm ◽  
...  

AbstractThe factors underlying gene flow and genomic population structure in vagile seabirds are notoriously difficult to understand due to their complex ecology with diverse dispersal barriers and extensive periods at sea. Yet, such understanding is vital for conservation management of seabirds that are globally declining at alarming rates. Here, we elucidate the population structure of the Atlantic puffin (Fratercula arctica) by assembling its reference genome and analyzing genome-wide resequencing data of 72 individuals from 12 colonies. We identify four large, genetically distinct clusters, observe isolation-by-distance between colonies within these clusters, and obtain evidence for a secondary contact zone. These observations disagree with the current taxonomy, and show that a complex set of contemporary biotic factors impede gene flow over different spatial scales. Our results highlight the power of whole genome data to reveal unexpected population structure in vagile marine seabirds and its value for seabird taxonomy, evolution and conservation.


2013 ◽  
Author(s):  
Simon H. Martin ◽  
John W. Davey ◽  
Chris D. Jiggins

Several methods have been proposed to test for introgression across genomes. One method tests for a genome-wide excess of shared derived alleles between taxa using Patterson?s D statistic, but does not establish which loci show such an excess or whether the excess is due to introgression or ancestral population structure. Several recent studies have extended the use of D by applying the statistic to small genomic regions, rather than genome-wide. Here, we use simulations and whole genome data from Heliconius butterflies to investigate the behavior of D in small genomic regions. We find that D is unreliable in this situation as it gives inflated values when effective population size is low, causing D outliers to cluster in genomic regions of reduced diversity. As an alternative, we propose a related statistic f̂d, a modified version of a statistic originally developed to estimate the genome-wide fraction of admixture. f̂d is not subject to the same biases as D, and is better at identifying introgressed loci. Finally, we show that both D and f̂d outliers tend to cluster in regions of low absolute divergence (dXY), which can confound a recently proposed test for differentiating introgression from shared ancestral variation at individual loci.


2018 ◽  
Author(s):  
Danesh Moradigaravand ◽  
Martin Palm ◽  
Anne Farewell ◽  
Ville Mustonen ◽  
Jonas Warringer ◽  
...  

AbstractThe emergence of microbial antibiotic resistance is a global health threat. In clinical settings, the key to controlling spread of resistant strains is accurate and rapid detection. As traditional culture-based methods are time consuming, genetic approaches have recently been developed for this task. The diagnosis is typically made by measuring a few known determinants previously identified from whole genome sequencing, and thus is restricted to existing information on biological mechanisms. To overcome this limitation, we employed machine learning models to predict resistance to 11 compounds across four classes of antibiotics from existing and novel whole genome sequences of 1936 E. coli strains. We considered a range of methods, and examined population structure, isolation year, gene content, and polymorphism information as predictors. Gradient boosted decision trees consistently outperformed alternative models with an average F1 score of 0.88 on held-out data (range 0.66-0.96). While the best models most frequently employed all inputs, an average F1 score of 0.73 could be obtained using population structure information alone. Single nucleotide variation data were less useful, and failed to improve prediction for ten out of 11 antibiotics. These results demonstrate that antibiotic resistance in E. coli can be accurately predicted from whole genome sequences without a priori knowledge of mechanisms, and that both genomic and epidemiological data are informative. This paves way to integrating machine learning approaches into diagnostic tools in the clinic.SummaryOne of the major health threats of 21st century is emergence of antibiotic resistance. To manage its economic impact, efforts are made to develop novel diagnostic tools that rapidly detect resistant strains in clinical settings. In our study, we employed a range machine learning tools to predict antibiotic resistance from whole genome sequencing data for E. coli. We used the presence or absence of genes, population structure and isolation year of isolates as predictors, and could attain average precision of 0.93 and recall of 0.83, without prior knowledge about the causal mechanisms. These results demonstrate the potential application of machine learning methods as a diagnostic tool in healthcare settings.


2020 ◽  
Author(s):  
Sierra Gillis ◽  
Andrew Roth

AbstractWe describe PyClone-VI, a computationally efficient Bayesian statistical method for inferring the clonal population structure of cancers. Our proposed method is 10-100x times faster than existing methods, while providing results which are as accurate. We demonstrate the utility of the method by analyzing data from 1717 patients from PCAWG study and 100 patients from the TRACERx study. Software implementing our method is freely available https://github.com/Roth-Lab/pyclone-vi.


2019 ◽  
Author(s):  
Morteza M. Saber ◽  
Jesse Shapiro

AbstractGenome Wide Association Studies (GWASs) have the potential to reveal the genetics of microbial phenotypes such as antibiotic resistance and virulence. Capitalizing on the growing wealth of bacterial sequence data, microbial GWAS methods aim to identify causal genetic variants while ignoring spurious associations. Bacteria reproduce clonally, leading to strong population structure and genome-wide linkage, making it challenging to separate true “hits” (i.e. mutations that cause a phenotype) from non-causal linked mutations. GWAS methods attempt to correct for population structure in different ways, but their performance has not yet been systematically evaluated. Here we developed a bacterial GWAS simulator (BacGWASim) to generate bacterial genomes with varying rates of mutation, recombination, and other evolutionary parameters, along with a subset of causal mutations underlying a phenotype of interest. We assessed the performance (recall and precision) of three widely-used univariate GWAS approaches (cluster-based, dimensionality-reduction, and linear mixed models, implemented in PLINK, pySEER, and GEMMA) and one relatively new whole-genome elastic net model implemented in pySEER, across a range of simulated sample sizes, recombination rates, and causal mutation effect sizes. As expected, all methods performed better with larger sample sizes and effect sizes. The performance of clustering and dimensionality reduction approaches to correct for population structure were considerably variable according to the choice of parameters. Notably, the elastic net whole-genome model was consistently amongst the highest-performing methods and had the highest power in detecting causal variants with both low and high effect sizes. Most methods reached good performance (Recall > 0.75) to identify causal mutations of strong effect size (log Odds Ratio >= 2) with a sample size of 2000 genomes. However, only elastic nets reached reasonable performance (Recall = 0.35) for detecting markers with weaker effects (log OR ∼1) in smaller samples. Elastic nets also showed superior precision and recall in controlling for genome-wide linkage, relative to univariate models. However, all methods performed relatively poorly on highly clonal (low-recombining) genomes, suggesting room for improvement in method development. These findings show the potential for whole-genome models to improve bacterial GWAS performance. BacGWASim code and simulated data are publicly available to enable further comparisons and benchmarking of new methods.Author summaryMicrobial populations contain measurable phenotypic differences with important clinical and environmental consequences, such as antibiotic resistance, virulence, host preference and transmissibility. A major challenge is to discover the genes and mutations in bacterial genomes that control these phenotypes. Bacterial Genome-Wide Association Studies (GWASs) are family of methods to statistically associate phenotypes with genotypes, such as point mutations and other variants across the genome. However, compared to sexual organisms such as humans, bacteria reproduce clonally meaning that causal mutations tend to be strongly linked to other mutations on the same chromosome. This genome-wide linkage makes it challenging to statistically separate causal mutations from non-causal false-positive associations. Several GWAS methods are currently available, but it is not clear which is the most powerful and accurate for bacteria. To systematically evaluate these methods, we developed BacGWASim, a computational pipeline to simulate the evolution of bacterial genomes and phenotypes. Using simulated genomes, we found that GWAS methods varied widely in their performance. In general, causal mutations of strong effect (e.g. those under strong selection for antibiotic resistance) could be easily identified with relatively small samples sizes of around 1000 genomes, but more complex phenotypes controlled by mutations of weaker effect required 3000 genomes or more. We found that a recently-developed GWAS method called elastic net was particularly good at identifying causal mutations in highly clonal populations, with strong linkage between mutations – but there is still room for improvement. The BacGWASim computer code is publicly available to enable further comparisons and benchmarking of new methods.


Sign in / Sign up

Export Citation Format

Share Document