scholarly journals Transcriptional characterization and response to defense elicitors of mevalonate pathway genes in cotton (Gossypium arboreum L.)

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8123
Author(s):  
Zhiqiang Zhang ◽  
Wei Liu ◽  
Zongbin Ma ◽  
Wei Zhu ◽  
Lin Jia

The mevalonate (MVA) pathway is responsible for the biosynthesis of cytosolic terpenes including gossypol and its derivatives, which play an important role in the cotton plant’s defense against pathogens and herbivores. In this study, we identified and cloned 17 potentially functional genes encoding enzymes that catalyze the six steps of the MVA pathway in Gossypium arboreum. Expression pattern analysis by qRT-PCR demonstrated that these genes had tissue-specific expression profiles and were most prevalently expressed in roots. Moreover, these genes were up-regulated in response to several elicitors, including methyl jasmonate and salicylic acid, as well as Verticillium dahliae infection and Helicoverpa armigera infestation. This indicates that the MVA pathway genes are involved in the signaling pathway regulated by exogenous hormones and the resistance of cotton plants to pathogens and herbivores. Our results improve the understanding of cytosolic terpene biosynthesis in Gossypium species and lay the foundation for further research on gossypol biosynthesis.

2020 ◽  
Author(s):  
Dmitry A. Smagin ◽  
Vladimir N. Babenko ◽  
Irina L. Kovalenko ◽  
Anna G. Galyamina ◽  
Olga E. Redina ◽  
...  

ABSTRACTThere are many psychiatric medications targeting the activity of SLC transporters. Therefore, further research is needed to elucidate the expression profiles of the Slc* genes, which may serve as markers of altered brain metabolic processes and neurotransmitter activities in psychoneurological disorders. We studied differentially expressed Slc genes using the transcriptomic profiles in the ventral tegmental area (VTA), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of male mice with psychosis-like behavior induced by repeated aggression experience in daily agonistic interactions which are accompanied by wins. Most of differentially expressed Slc genes in the VTA and NAcc (12 of 17 and 25 of 26, respectively) were downregulated, which was not the case in the PFC (6 and 5, up- and down, respectively). Also, the majority of these genes were shown to have brain region-specific expression profiles. In the VTA and NAcc altered expression was observed for the genes encoding the transporters of neurotransmitters as well as inorganic and organic ions, amino acids, metals, glucose, etc. This means alteration in transport functions for many substrates, which results in complete disruption of all cellular and neurotransmitter processes. The neurotransmitter systems, especially, the dopaminergic one, in male mice with positive fighting experience in daily agonistic interactions undergo changes leading to profound genomic modifications which include downregulated expression of the majority of the Slc* genes at least in the VTA and NAcc, which is attributable to chronic stimulation of the reward systems.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Li Guo ◽  
Jiafeng Yu ◽  
Hao Yu ◽  
Yang Zhao ◽  
Shujie Chen ◽  
...  

We mainly discussed miR-#-5p and miR-#-3p under three aspects: (1) primary evolutionary analysis of human miRNAs; (2) evolutionary analysis of miRNAs from different arms across the typical 10 vertebrates; (3) expression pattern analysis of miRNAs at the miRNA/isomiR levels using public small RNA sequencing datasets. We found that no bias can be detected between the numbers of 5p-miRNA and 3p-miRNA, while miRNAs from miR-#-5p and miR-#-3p show variable nucleotide compositions. IsomiR expression profiles from the two arms are always stable, but isomiR expressions in diseased samples are prone to show larger degree of dispersion. miR-#-5p and miR-#-3p have relative independent evolution/expression patterns and datasets of target mRNAs, which might also contribute to the phenomena of arm selection and/or arm switching. Simultaneously, miRNA/isomiR expression profiles may be regulated via arm selection and/or arm switching, and the dynamic miRNAome and isomiRome will adapt to functional and/or evolutionary pressures. A comprehensive analysis and further experimental study at the miRNA/isomiR levels are quite necessary for miRNA study.


2010 ◽  
Vol 76 (16) ◽  
pp. 5533-5540 ◽  
Author(s):  
Carien C. G. M. Booijink ◽  
Jos Boekhorst ◽  
Erwin G. Zoetendal ◽  
Hauke Smidt ◽  
Michiel Kleerebezem ◽  
...  

ABSTRACT The human gastrointestinal (GI) tract provides home to a complex microbial community, collectively termed microbiota. Although major efforts have been made to describe the diversity and stability of the microbiota, functional studies have been largely restricted to intestinal isolates and include few community studies. The aim of this study was to explore the in situ gene expression of the fecal microbiota and to evaluate the RNA fingerprinting method cDNA-AFLP (cDNA amplified fragment length polymorphism) for this purpose. To this end, cDNA-AFLP analysis of enriched mRNA revealed that two healthy subjects showed highly divergent expression profiles with considerable fluctuations in time. Subsequent excision and sequence determination of bands from the mRNA-enriched profiles resulted in 122 identifiable sequences (transcripts and rRNAs). The classification of retrieved transcripts into functional clusters based on COG (cluster of orthologous genes) annotation showed that most assigned transcripts belonged to the metabolism cluster (26% of all sequences), underlining that even at the very end of the intestinal tract the microbiota is still very active. This study furthermore revealed that cDNA-AFLP is a useful tool to compare gene expression profiles in time in complex microbial communities.


2016 ◽  
Vol 113 (35) ◽  
pp. E5222-E5231 ◽  
Author(s):  
Csaba Földy ◽  
Spyros Darmanis ◽  
Jason Aoto ◽  
Robert C. Malenka ◽  
Stephen R. Quake ◽  
...  

In brain, signaling mediated by cell adhesion molecules defines the identity and functional properties of synapses. The specificity of presynaptic and postsynaptic interactions that is presumably mediated by cell adhesion molecules suggests that there exists a logic that could explain neuronal connectivity at the molecular level. Despite its importance, however, the nature of such logic is poorly understood, and even basic parameters, such as the number, identity, and single-cell expression profiles of candidate synaptic cell adhesion molecules, are not known. Here, we devised a comprehensive list of genes involved in cell adhesion, and used single-cell RNA sequencing (RNAseq) to analyze their expression in electrophysiologically defined interneurons and projection neurons. We compared the cell type-specific expression of these genes with that of genes involved in transmembrane ion conductances (i.e., channels), exocytosis, and rho/rac signaling, which regulates the actin cytoskeleton. Using these data, we identified two independent, developmentally regulated networks of interacting genes encoding molecules involved in cell adhesion, exocytosis, and signal transduction. Our approach provides a framework for a presumed cell adhesion and signaling code in neurons, enables correlating electrophysiological with molecular properties of neurons, and suggests avenues toward understanding synaptic specificity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meiyun Niu ◽  
Haifeng Yan ◽  
Yuping Xiong ◽  
Yueya Zhang ◽  
Xinhua Zhang ◽  
...  

AbstractSandalwood (Santalum album L.) is famous for its unique fragrance derived from the essential oil of heartwood, whose major components are santalols. To understand the mechanism underlying the biosynthesis of santalols, in this study, we cloned two related genes involved in the mevalonate pathway in S. album coding for acetyl-CoA C-acetyl transferase (AACT) and 3-hydroxy-3-methyglutary-CoA synthase (HMGS). These genes were characterized and functionally analyzed, and their expression profiles were also assessed. An AACT gene designated as SaAACT (GenBank accession No. MH018694) and a HMGS gene designated as SaHMGS (GenBank accession No. MH018695) were successfully cloned from S. album. The deduced SaAACT and SaHMGS proteins contain 415 and 470 amino acids, and the corresponding size of their open-reading frames is 1538 bp and 1807 bp, respectively. Phylogenetic trees showed that the SaAACT protein had the closest relationship with AACT from Hevea brasiliensis and the SaHMGS proteins had the highest homology with HMGS from Siraitia grosvenorii. Functional complementation of SaAACT and SaHMGS in a mutant yeast strain deficient in these proteins confirmed that SaAACT and SaHMGS cDNA encodes functional SaAACT and SaHMGS that mediate mevalonate biosynthesis in yeast. Tissue-specific expression analysis revealed that both genes were constitutively expressed in all examined tissues (roots, sapwood, heartwood, young leaves, mature leaves and shoots) of S. album, both genes showing highest expression in roots. After S. album seedlings were treated with 100 μM methyl jasmonate, the expression levels of SaAACT and SaHMGS genes increased, suggesting that these genes were responsive to this elicitor. These studies provide insight that would allow further analysis of the role of genes related to the sandalwood mevalonate pathway in the regulation of biosynthesis of sandalwood terpenoids and a deeper understanding of the molecular mechanism of santalol biosynthesis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Swapna Vidhur Daulatabad ◽  
Rajneesh Srivastava ◽  
Sarath Chandra Janga

Abstract Background With advancements in omics technologies, the range of biological processes where long non-coding RNAs (lncRNAs) are involved, is expanding extensively, thereby generating the need to develop lncRNA annotation resources. Although, there are a plethora of resources for annotating genes, despite the extensive corpus of lncRNA literature, the available resources with lncRNA ontology annotations are rare. Results We present a lncRNA annotation extractor and repository (Lantern), developed using PubMed’s abstract retrieval engine and NCBO’s recommender annotation system. Lantern’s annotations were benchmarked against lncRNAdb’s manually curated free text. Benchmarking analysis suggested that Lantern has a recall of 0.62 against lncRNAdb for 182 lncRNAs and precision of 0.8. Additionally, we also annotated lncRNAs with multiple omics annotations, including predicted cis-regulatory TFs, interactions with RBPs, tissue-specific expression profiles, protein co-expression networks, coding potential, sub-cellular localization, and SNPs for ~ 11,000 lncRNAs in the human genome, providing a one-stop dynamic visualization platform. Conclusions Lantern integrates a novel, accurate semi-automatic ontology annotation engine derived annotations combined with a variety of multi-omics annotations for lncRNAs, to provide a central web resource for dissecting the functional dynamics of long non-coding RNAs and to facilitate future hypothesis-driven experiments. The annotation pipeline and a web resource with current annotations for human lncRNAs are freely available on sysbio.lab.iupui.edu/lantern.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 500
Author(s):  
Jeeyong Lee ◽  
Junhye Kwon ◽  
DaYeon Kim ◽  
Misun Park ◽  
KwangSeok Kim ◽  
...  

LARC patients were sorted according to their radio-responsiveness and patient-derived organoids were established from the respective cancer tissues. Expression profiles for each group were obtained using RNA-seq. Biological and bioinformatic analysis approaches were used in deciphering genes and pathways that participate in the radio-resistance of LARC. Thirty candidate genes encoding proteins involved in radio-responsiveness–related pathways, including the immune system, DNA repair and cell-cycle control, were identified. Interestingly, one of the candidate genes, cathepsin E (CTSE), exhibited differential methylation at the promoter region that was inversely correlated with the radio-resistance of patient-derived organoids, suggesting that methylation status could contribute to radio-responsiveness. On the basis of these results, we plan to pursue development of a gene chip for diagnosing the radio-responsiveness of LARC patients, with the hope that our efforts will ultimately improve the prognosis of LARC patients.


Sign in / Sign up

Export Citation Format

Share Document