scholarly journals Alveolar soft-part sarcoma (ASPS) resembles a mesenchymal stromal progenitor: evidence from meta-analysis of transcriptomic data

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9394
Author(s):  
Luke H. Stockwin

Alveolar soft-part sarcoma (ASPS) is an extremely rare malignancy characterized by the unbalanced translocation der(17)t(X;17)(p11;q25). This translocation generates a fusion protein, ASPL-TFE3, that drives pathogenesis through aberrant transcriptional activity. Although considerable progress has been made in identifying ASPS therapeutic vulnerabilities (e.g., MET inhibitors), basic research efforts are hampered by the lack of appropriate in vitro reagents with which to study the disease. In this report, previously unmined microarray data for the ASPS cell line, ASPS-1, was analyzed relative to the NCI sarcoma cell line panel. These data were combined with meta-analysis of pre-existing ASPS patient microarray and RNA-seq data to derive a platform-independent ASPS transcriptome. Results demonstrated that ASPS-1, in the context of the NCI sarcoma cell panel, had some similarities to normal mesenchymal cells and connective tissue sarcomas. The cell line was characterized by high relative expression of transcripts such as CRYAB, MT1G, GCSAML, and SV2B. Notably, ASPS-1 lacked mRNA expression of myogenesis-related factors MYF5, MYF6, MYOD1, MYOG, PAX3, and PAX7. Furthermore, ASPS-1 had a predicted mRNA surfaceome resembling an undifferentiated mesenchymal stromal cell through expression of GPNMB, CD9 (TSPAN29), CD26 (DPP4), CD49C (ITGA3), CD54 (ICAM1), CD63 (TSPAN30), CD68 (SCARD1), CD130 (IL6ST), CD146 (MCAM), CD147 (BSG), CD151 (SFA-1), CD166 (ALCAM), CD222 (IGF2R), CD230 (PRP), CD236 (GPC), CD243 (ABCB1), and CD325 (CDHN). Subsequent re-analysis of ASPS patient data generated a consensus expression profile with considerable overlap between studies. In common with ASPS-1, elevated expression was noted for CTSK, DPP4, GPNMB, INHBE, LOXL4, PSG9, SLC20A1, STS, SULT1C2, SV2B, and UPP1. Transcripts over-expressed only in ASPS patient samples included ABCB5, CYP17A1, HIF1A, MDK, P4HB, PRL, and PSAP. These observations are consistent with that expected for a mesenchymal progenitor cell with adipogenic, osteogenic, or chondrogenic potential. In summary, the consensus data generated in this study highlight the unique and highly conserved nature of the ASPS transcriptome. Although the ability of the ASPL-TFE3 fusion to perturb mRNA expression must be acknowledged, the prevailing ASPS transcriptome resembles that of a mesenchymal stromal progenitor.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sho Nakai ◽  
Shutaro Yamada ◽  
Hidetatsu Outani ◽  
Takaaki Nakai ◽  
Naohiro Yasuda ◽  
...  

Abstract Approximately 60–70% of EWSR1-negative small blue round cell sarcomas harbour a rearrangement of CIC, most commonly CIC-DUX4. CIC-DUX4 sarcoma (CDS) is an aggressive and often fatal high-grade sarcoma appearing predominantly in children and young adults. Although cell lines and their xenograft models are essential tools for basic research and development of antitumour drugs, few cell lines currently exist for CDS. We successfully established a novel human CDS cell line designated Kitra-SRS and developed orthotopic tumour xenografts in nude mice. The CIC-DUX4 fusion gene in Kitra-SRS cells was generated by t(12;19) complex chromosomal rearrangements with an insertion of a chromosome segment including a DUX4 pseudogene component. Kitra-SRS xenografts were histologically similar to the original tumour and exhibited metastatic potential to the lungs. Kitra-SRS cells displayed autocrine activation of the insulin-like growth factor 1 (IGF-1)/IGF-1 receptor (IGF-1R) pathway. Accordingly, treatment with the IGF-1R inhibitor, linsitinib, attenuated Kitra-SRS cell growth and IGF-1-induced activation of IGF-1R/AKT signalling both in vitro and in vivo. Furthermore, upon screening 1134 FDA-approved drugs, the responses of Kitra-SRS cells to anticancer drugs appeared to reflect those of the primary tumour. Our model will be a useful modality for investigating the molecular pathology and therapy of CDS.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5172-5172
Author(s):  
Ahmet H Elmaagacli ◽  
Michael Koldehoff ◽  
Nina K Steckel ◽  
Dietrich Beelen

Abstract Background. The protein kinase C (PKC) inhibitor PKC412 (N-benzylstaurosporine) is a derivate of the naturally occurring alkaloid staurosproine and has been shown to inhibit the conventional isoforms of PKC (alfa, beta1, beta2 and gamma). PKC412 has been shown to have an antitumor effect on non-small cell lung cancer and acute leukemia with FLT3 mutations, but little is known about its effect on multiple myeloma up to date. Methods. Since PKC is also an inhibitor of a tyrosin kinase which is associated with VEGF, and inhibits the release of Interleukin-6, TNF alfa, and that of growth factor dependent C-FOS, we postulated that PKC412 might have also strong anti-myeloma features. Here we evaluated the anti-myeloma effect of PKC412 in the multiple myeloma cell lines INA-6, OPM-2 and RPMI 8226 by measuring its effect on their proliferation rate, the apoptosis rate and the Interleukin-6 mRNA expression. Results. PKC412 showed strong anti-myeloma effects in all three celllines. 50nM of PKC412 was enough to drop the proliferation rate in all three cell lines under 10% compared to untreated cells(p<0.01). The apoptosis rate increased in INA cell line up to 2,5 times and in RPMI cell line up to 3 times (p<0.05), whereas only a moderate increase was observed in the OPM2 cell line with 500nM of PKC412. As expected, the IL-6 mRNA expression decreased after PKC412 treatment in all three cell lines more than 50%. The addition of Bevacizumab to PKC412 in RPMI and OPM-2 cell lines did not increased the apoptosis rate significantly, whereas the addition of short-interference RNA (RNAi) against VEGF increased the apoptosis rate in RPMI 8226 cells about 20% (p<0.05) and in OPM-2 cells up to 30% (p<0.01) compared to PKC412 alone, which was also associated concordantly with a further reduction of the proliferation rate in RPMI and OPM-2 cells up to 30%. Conclusions. PKC412 shows strong anti-myeloma effects and might be effective also in the treatment of patients with multiple myeloma. These in-vitro studies might encourage to initiate clinical trials with PKC412 in patients with multiple myeloma.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hua Zheng ◽  
Jing Min

This study investigated the function of HOTAIR in the growth and apoptosis of OS MG-63 cell linein vitroand further clarified its mechanism. The expression levels of HOTAIR in OS MG-63 cell line and normal osteoblast hFOB1.19 cell line were determined by RT-PCR, respectively. The growth and apoptosis of MG-63 cellsin vitrowere investigated by MTT assay and flow cytometry assay after HOTAIR was knocked down with retroviral vector construction. And the expression levels of cell growth and apoptosis related factors TGF-β, p53, Bcl-2, and TNF-αwere determined to clarify the mechanism. We found that HOTAIR was highly expressed in osteosarcoma MG-63 cell line compared with normal osteoblast hFOB1.19 cell line. The proliferation rate was lower and the apoptosis rate was higher significantly in shHOTAIR MG-63 cells than those in EV MG-63 cells. TGF-βand Bcl-2 were downregulated significantly when HOTAIR was knocked down. p53 and TNF-αwere upregulated significantly when HOTAIR was knocked down. These results indicated that HOTAIR functioned as a carcinogenic lncRNA, which could promote the proliferation and inhibit the apoptosis of MG-63 cellsin vitro. HOTAIR could be a potential target for the treatment of osteosarcoma.


2001 ◽  
Vol 86 (7) ◽  
pp. 3157-3161
Author(s):  
O. Khorram ◽  
M. Garthwaite ◽  
T. Golos

GHRH is a neuropeptide that has also been localized to the immune system. The physiological function of GHRH in the immune system has not been elucidated. This study was conducted to determine whether immune GHRH expression is altered in certain pathological states, such as immune cell tumors, and whether gender, aging, and alterations in the sex steroid milieu influence the expression of this peptide in immune cells. Using double color flow cytometry, GHRH protein was found to be expressed in less than 2% of peripheral blood mononuclear cells (PBMC). Monocytes and B and T cells all expressed GHRH protein, although a greater percentage of T cells compared with B cells and monocytes expressed GHRH (5- to 7-fold). Semiquantitative RT-PCR was used to quantify GHRH messenger ribonucleic acid (mRNA) in PBMC and several immune cell-derived tumors. PBMC and granulocytes expressed low levels of GHRH mRNA with relatively higher levels of expression in monocytes. The tumor cell lines CEMX 174 (B/T cells), HUT 78 (T cells), WIL2-N (B cells), U937 (monocytes/macrophages), and JM 1 (pre-B cell lymphoma) all showed greater expression of GHRH mRNA relative to PBMC. However, two cell lines, CCRF-SB, a B lymphoblastoid cell line, and HL-60, a promyelocytic cell line, expressed GHRH mRNA at similar levels as PBMC. A significant decrease in the percentage of lymphocytes (CD45+ cells) expressing GHRH protein was found in age-advanced men and women compared with young men and women. This decline was noted in B cells (CD20+) and monocytes (CD14+), but not in T cells (CD3+). GHRH mRNA expression in PBMC derived from postmenopausal women was lower than that from premenopausal women. However, no differences in PBMC GHRH mRNA expression were found in young and old men. Although in older men there were fewer peripheral lymphocytes that express GHRH protein, these cells secreted significantly more GHRH in vitro than cells from postmenopausal women with no hormone replacement therapy (HRT), but similar levels as cells from women receiving HRT. PBMC from women receiving HRT secreted more GHRH in vitro than cells from women receiving no hormone replacement. This study demonstrates that the expression of immune GHRH is dynamic, and therefore likely to be regulated. Increased expression of GHRH in certain immune tumors suggests that GHRH may be mitogenic under certain conditions and therefore play a role in the pathogenesis of select immune cell tumors. Collectively, these results suggest a role for GHRH as a local immune modulator and in the pathophysiology of immunosenescence and immune cell tumors.


2014 ◽  
Vol 97 (2) ◽  
pp. 348-356 ◽  
Author(s):  
Joseph Hill ◽  
Jessica Lawrence ◽  
Corey Saba ◽  
Michelle Turek ◽  
Brittany Feldhaeusser ◽  
...  

2020 ◽  
Author(s):  
Jan Philip Suppelna ◽  
Kamran Harati ◽  
Andrea Rittig ◽  
Ingo Stricker ◽  
Markus Lehnhardt ◽  
...  

Abstract Background: The concept of a multimodality therapy in the treatment of soft tissue sarcomas (STS) has been discussed with controversy. Surgical resection with clear margins and radiation therapy remain gold standard in STS therapy. It is still questionable whether a systemic therapy with chemotherapeutics has a positive impact on the overall survival rate especially in early stages of disease, because the therapeutic effect in the treatment of STS is limited by its toxicities and its low responding rates. Treatment options are rare. As a result the search for combination therapies by using low dose approaches is of high importance. Recent studies showed the therapeutic efficiency of a designer host defense-like lytic D,L- amino acid peptide [D]-K 3 H 3 L 9 . Therefore we tested a combination of this peptide with Doxorubicin on two different sarcoma cell lines in vitro and also in a syngeneic immunocompetent murine fibrosarcoma mouse model. Methods: In vitro the human synovial sarcoma cell line SW 982 and the murine fibrosarcoma cell line BFS-1 were exposed to the oncolytic peptide [D]-K 3 H 3 L 9 , to the Anthracycline Doxorubicin and to both agents simultaneously. In vivo the murine fibrosarcoma cell line BFS-1 was injected subcutaneously into the syngeneic mice. When the tumors engrafted the oncolytic designer peptide [D]-K 3 H 3 L 9 , Doxorubicin or a combination of both was administered thrice a week for a three weeks’ follow-up. Results: The combination treatment approach using an oncolytic designer host defense peptide and Doxorubicin inhibited the in vitro sarcoma cell proliferation significantly. The single therapies, either with local intratumoral application of [D]-K 3 H 3 L 9 or with intraperitoneal application of Doxorubicin in the syngeneic mouse model, inhibited at least the tumor progression. The combination of both substances revealed a significant inhibition of tumor growth and weight. Conclusion: The in vivo low dose combination schedule inhibited the tumor growth significantly. Histological analyses of the tumor sections revealed an antiproliferative and antiangiogenic effect. So, these results demonstrate the effectiveness of combined low-dose application forms with designer host defense-like lytic peptides and chemotherapeutics.


Author(s):  
Konrad A. Szychowski ◽  
Bartosz Skóra ◽  
Anna Kryshchyshyn-Dylevych ◽  
Danylo Kaminskyy ◽  
Kamila Rybczyńska-Tkaczyk ◽  
...  

Abstract4-Thiazolidinones and related derivatives are regarded as privileged structures in medicinal chemistry and a source of new drug-like compounds. To date it is known that thiazolidinones are able to induce CYP1A1 activity in 3T3-L1 cells. Therefore, to extend the knowledge of the mechanism of thiazolidinones in the cell, four chemically synthesized heterocycles were tested on 3T3-L1 cells. The 3T3-L1 cells were exposed to Les-2194, Les-3640, Les-5935, and Les-6166. Our study showed that 1 μM βNF, Les-2194, and Les-6166 decreased the expression of Ahr mRNA. In turn, βNF, Les-2194, and Les-3640 increased the Cyp1a1 mRNA expression at the same time interval. On the other hand, Les-5935 was found to decrease the Cyp1a1 mRNA expression. Interestingly, the expression of Cyp1a2 mRNA was activated only by βNF and Les-2194. The expression of Cyp1b1 mRNA in the 3T3 cell line increased after the βNF and Les-2194 treatment but declined after the exposure to Les-5935 and Les-6166. Moreover, the Les-2194 and Les-5935 compounds were shown to increase the activity of EROD, MROD, and PROD. Les-3640 increased the activity of EROD and decreased the activity of PROD. In turn, the treatment with Les-6166 resulted in an increase in the activity of EROD and a decrease in the activity of MROD and PROD in the 3T3-L1 cells.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 829
Author(s):  
Luca Hegedüs ◽  
Özlem Okumus ◽  
Elisabeth Livingstone ◽  
Marcell Baranyi ◽  
Ildikó Kovács ◽  
...  

Spitzoid melanoma is a rare malignancy with histological characteristics similar to Spitz nevus. It has a diverse genetic background and in adults, a similarly grim clinical outcome as conventional malignant melanoma. We established a spitzoid melanoma cell line (PF130) from the pleural effusion sample of a 37-year-old male patient. We found that the cell line carries a rare MEK1 mutation (pGlu102_Lys104delinsGln) that belongs to the RAF- and phosphorylation-independent subgroup of MEK1 alternations supposedly insensitive to allosteric MEK inhibitors. The in vivo tumorigenicity was tested in three different models by injecting the cells subcutaneously, intravenously or into the thoracic cavity of SCID mice. In the intrapleural model, macroscopic tumors formed in the chest cavity after two months, while subcutaneously and intravenously delivered cells showed limited growth. In vitro, trametinib—but not selumentinib—and the ATP-competitive MEK inhibitor MAP855 strongly decreased the viability of the cells and induced cell death. In vivo, trametinib but not MAP855 significantly reduced tumor growth in the intrapleural model. To the best of our knowledge, this is the first patient-derived melanoma model with RAF- and phosphorylation-independent MEK mutation and we demonstrated its sensitivity to trametinib.


Sign in / Sign up

Export Citation Format

Share Document