scholarly journals Role of Long Noncoding RNA HOTAIR in the Growth and Apoptosis of Osteosarcoma Cell MG-63

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hua Zheng ◽  
Jing Min

This study investigated the function of HOTAIR in the growth and apoptosis of OS MG-63 cell linein vitroand further clarified its mechanism. The expression levels of HOTAIR in OS MG-63 cell line and normal osteoblast hFOB1.19 cell line were determined by RT-PCR, respectively. The growth and apoptosis of MG-63 cellsin vitrowere investigated by MTT assay and flow cytometry assay after HOTAIR was knocked down with retroviral vector construction. And the expression levels of cell growth and apoptosis related factors TGF-β, p53, Bcl-2, and TNF-αwere determined to clarify the mechanism. We found that HOTAIR was highly expressed in osteosarcoma MG-63 cell line compared with normal osteoblast hFOB1.19 cell line. The proliferation rate was lower and the apoptosis rate was higher significantly in shHOTAIR MG-63 cells than those in EV MG-63 cells. TGF-βand Bcl-2 were downregulated significantly when HOTAIR was knocked down. p53 and TNF-αwere upregulated significantly when HOTAIR was knocked down. These results indicated that HOTAIR functioned as a carcinogenic lncRNA, which could promote the proliferation and inhibit the apoptosis of MG-63 cellsin vitro. HOTAIR could be a potential target for the treatment of osteosarcoma.

2016 ◽  
Vol 15 (6) ◽  
pp. NP105-NP112 ◽  
Author(s):  
Fei Wang ◽  
Dapeng Yu ◽  
Zhen Liu ◽  
Ruijie Wang ◽  
Yan Xu ◽  
...  

MicroRNAs are highly conserved noncoding RNA that negatively modulate protein expression at a posttranscriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. To date, the potential microRNAs regulating the growth and progression of osteosarcoma are not fully identified yet. Previous reports have shown differentially expressed miR-125b in osteosarcoma. However, the role of miR-125b in human osteosarcoma has not been totally illuminated. In this study, we have shown that miR-125b was downregulated in human osteosarcoma tissues compared to the adjacent tissues and effects as a tumor suppressor in vitro. We found that stable overexpression of miR-125b in osteosarcoma cell lines U2OS and MG-63 inhibited cell proliferation, migration, and invasion. Our data also verified that Bcl-2 is the target of miR-125b. Meanwhile, we showed that Bcl-2 was inversely correlated with miR-125b in osteosarcoma tissues. More importantly, we proved that miR-125b increased the chemosensitivity of osteosarcoma cell lines to cisplatin by targeting Bcl-2. In conclusion, our data demonstrate that miR-125b is a tumor suppressor and support its potential application for the treatment of osteosarcoma in the future.


2021 ◽  
Vol 22 (8) ◽  
pp. 3873
Author(s):  
Gabriel Luta ◽  
Mihail Butura ◽  
Adrian Tiron ◽  
Crina E. Tiron

Background: In the latest years, there has been an increased interest in nanomaterials that may provide promising novel approaches to disease diagnostics and therapeutics. Our previous results demonstrated that Carbon-dots prepared from N-hydroxyphthalimide (CD-NHF) exhibited anti-tumoral activity on several cancer cell lines such as MDA-MB-231, A375, A549, and RPMI8226, while U87 glioma tumor cells were unaffected. Gliomas represent one of the most common types of human primary brain tumors and are responsible for the majority of deaths. In the present in vitro study, we expand our previous investigation on CD-NHF in the U87 cell line by adding different drug combinations. Methods: Cell viability, migration, invasion, and immunofluorescent staining of key molecular pathways have been assessed after various treatments with CD-NHF and/or K252A and AKTVIII inhibitors in the U87 cell line. Results: Association of an inhibitor strongly potentiates the anti-tumoral properties of CD-NHF identified by significant impairment of migration, invasion, and expression levels of phosphorylated Akt, p70S6Kinase, or by decreasing expression levels of Bcl-2, IL-6, STAT3, and Slug. Conclusions: Using simultaneously reduced doses of both CD-NHF and an inhibitor in order to reduce side effects, the viability and invasiveness of U87 glioma cells were significantly impaired.


2021 ◽  
Vol 22 (3) ◽  
pp. 1163
Author(s):  
Gaia Palmini ◽  
Cecilia Romagnoli ◽  
Simone Donati ◽  
Roberto Zonefrati ◽  
Gianna Galli ◽  
...  

Telangiectatic osteosarcoma (TOS) is an aggressive variant of osteosarcoma (OS) with distinctive radiographic, gross, microscopic features, and prognostic implications. Despite several studies on OS, we are still far from understanding the molecular mechanisms of TOS. In recent years, many studies have demonstrated not only that microRNAs (miRNAs) are involved in OS tumorigenesis, development, and metastasis, but also that the presence in high-grade types of OS of cancer stem cells (CSCs) plays an important role in tumor progression. Despite these findings, nothing has been described previously about the expression of miRNAs and the presence of CSCs in human TOS. Therefore, we have isolated/characterized a putative CSC cell line from human TOS (TOS-CSCs) and evaluated the expression levels of several miRNAs in TOS-CSCs using real-time quantitative assays. We show, for the first time, the existence of CSCs in human TOS, highlighting the in vitro establishment of this unique stabilized cell line and an identification of a preliminary expression of the miRNA profile, characteristic of TOS-CSCs. These findings represent an important step in the study of the biology of one of the most aggressive variants of OS and the role of miRNAs in TOS-CSC behavior.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2017 ◽  
Vol 32 (4) ◽  
pp. 403-408 ◽  
Author(s):  
Hongfen Liu ◽  
Qiang Zhen ◽  
Yakun Fan

Background Recent studies have shown that long noncoding RNA (IncRNA) gastric carcinoma highly expressed transcript 1 (GHET1) was involved in the progression of tumors. However, the role of GHET1 in esophageal squamous cell carcinoma (ESCC) remains unclear. Methods The expression of IncRNA GHET1 was examined in 55 paired ESCC tissues and adjacent nontumor tissues. Molecular and cellular techniques were used to explore the role of GHET1 on ESCC cells. Results Our data showed that GHET1 expression was significantly increased in ESCC tissues and cell lines. High GHET1 expression in ESCC tissues was significantly associated with poor differentiation, advanced tumor nodes metastasis stage, and lymph node metastasis. GHET1 showed high sensitivity and specificity for diagnosing ESCC. Our data from in vitro assays showed that GHET1 inhibition suppressed ESCC cells proliferation, migration, and invasion, and induced cells apoptosis. Furthermore, western blot showed that GHET1 inhibition significantly decreased the expression of vimentin and N-cadherin while it increased the expression of E-cadherin. Conclusions Our study indicates that GHET1 acts as an oncogene in ESCC and may represent a novel therapeutic target for the treatment of ESCC patients.


Author(s):  
Kristin Schirmer ◽  
Katrin Tanneberger ◽  
Nynke I. Kramer ◽  
Frans J.M. Busser ◽  
Joop L.M. Hermens ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 2478-2483
Author(s):  
Xiang Ji ◽  
Kai-Wen Zhou

Glaucoma is a leading cause of vision loss mainly due to retinal ganglion cells (RGC) loss. MicroRNAs (miRNAs) are highlighted as potential biomarkers in diseases. This study aims to investigate the role of miR-43 and BMSCs in the RGC apoptosis and glaucoma.RGCs were transfected with miR-43 inhibitors and mimics, and then co-cultured with BMSCs. RT-qPCR analysis was conducted to determine miR-43 expression, whilst Western blot, and flow cytometry were carried out to assess the role of miR-43 in apoptosis and inflammation. The interaction between miR-43 and BDNF, a neurotrophic factor, was detected by dual-luciferase reporter gene assay. Overexpression of miR-43 promoted RGC proliferation and decreased apoptosis. Furthermore, miR-43 overexpression diminished the contents of apoptosis- and inflammatory-related factors, and elevated the expression of BDNF. Down-regulation of BDNF exerted similar effect as down-regulation of miR-43, enhancing apoptosis and aggravating inflammation. Importantly, BMSC treatment reversed the in vitro inhibitory effect of si-BDNF on RGC with enhancement of miR-43 expression. Mechanically, miR-43 was indicated to target BDNF in glaucoma. Collectively, miR-43 delivered by BMSCs plays an important role in the inflammatory injury and abnormal apoptosis of RGC by regulating the expression of BDNF. These findings might help development of new treatment for glaucoma and provide a promising biomarker for diagnosis and treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Linli Li ◽  
Yiqun He ◽  
Han Tang ◽  
Wei Mao ◽  
Haofei Ni ◽  
...  

Background. Angiogenesis is a prerequisite step to achieve the success of bone regeneration by tissue engineering technology. Previous studies have shown the role of cerebrospinal fluid pulsation (CSFP) stress in the reconstruction of tissue-engineered laminae. In this study, we investigated the role of CSFP stress in the angiogenesis of tissue-engineered laminae. Methods. For the in vitro study, a CSFP bioreactor was used to investigate the impact of CSFP stress on the osteogenic mesenchymal stem cells (MSCs). For the in vivo study, forty-eight New Zealand rabbits were randomly divided into the CSFP group and the Non-CSFP group. Tissue-engineered laminae (TEL) was made by hydroxyapatite-collagen I scaffold and osteogenic MSCs and then implanted into the lamina defect in the two groups. The angiogenic and osteogenic abilities of newborn laminae were examined with histological staining, qRT-PCR, and radiological analysis. Results. The in vitro study showed that CSFP stress could promote the vascular endothelial growth factor A (VEGF-A) expression levels of osteogenic MSCs. In the animal study, the expression levels of angiogenic markers in the CSFP group were higher than those in the Non-CSFP group; moreover, in the CSFP group, their expression levels on the dura mater surface, which are closer to the CSFP stress stimulation, were also higher than those on the paraspinal muscle surface. The expression levels of osteogenic markers in the CSFP group were also higher than those in the Non-CSFP group. Conclusion. CSFP stress could promote the angiogenic ability of osteogenic MSCs and thus promote the angiogenesis of tissue-engineered laminae. The pretreatment of osteogenic MSC with a CSFP bioreactor may have important implications for vertebral lamina reconstruction with a tissue engineering technique.


Sign in / Sign up

Export Citation Format

Share Document