Development of a Real-Time Resolution Compaction Degree Assessment Algorithm Using an Accelerometer

2021 ◽  
Vol 23 (2) ◽  
pp. 21-28
Author(s):  
Geonwoo Kim ◽  
Hyungil Ga ◽  
Sungho Mun
2019 ◽  
Vol 486 (4) ◽  
pp. 5052-5060 ◽  
Author(s):  
James Kent ◽  
Jayce Dowell ◽  
Adam Beardsley ◽  
Nithyanandan Thyagarajan ◽  
Greg Taylor ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5764 ◽  
Author(s):  
Yongwon Jang ◽  
Seunghwan Kim ◽  
Kiseong Kim ◽  
Doheon Lee

Background The proportion of overweight and obese people has increased tremendously in a short period, culminating in a worldwide trend of obesity that is reaching epidemic proportions. Overweight and obesity are serious issues, especially with regard to children. This is because obese children have twice the risk of becoming obese as adults, as compared to non-obese children. Nowadays, many methods for maintaining a caloric balance exist; however, these methods are not applicable to children. In this study, a new approach for helping children monitor their activities using a convolutional neural network (CNN) is proposed, which is applicable for real-time scenarios requiring high accuracy. Methods A total of 136 participants (86 boys and 50 girls), aged between 8.5 years and 12.5 years (mean 10.5, standard deviation 1.1), took part in this study. The participants performed various movement while wearing custom-made three-axis accelerometer modules around their waists. The data acquired by the accelerometer module was preprocessed by dividing them into small sets (128 sample points for 2.8 s). Approximately 183,600 data samples were used by the developed CNN for learning to classify ten physical activities : slow walking, fast walking, slow running, fast running, walking up the stairs, walking down the stairs, jumping rope, standing up, sitting down, and remaining still. Results The developed CNN classified the ten activities with an overall accuracy of 81.2%. When similar activities were merged, leading to seven merged activities, the CNN classified activities with an overall accuracy of 91.1%. Activity merging also improved performance indicators, for the maximum case of 66.4% in recall, 48.5% in precision, and 57.4% in f1 score . The developed CNN classifier was compared to conventional machine learning algorithms such as the support vector machine, decision tree, and k-nearest neighbor algorithms, and the proposed CNN classifier performed the best: CNN (81.2%) > SVM (64.8%) > DT (63.9%) > kNN (55.4%) (for ten activities); CNN (91.1%) > SVM (74.4%) > DT (73.2%) > kNN (65.3%) (for the merged seven activities). Discussion The developed algorithm distinguished physical activities with improved time resolution using short-time acceleration signals from the physical activities performed by children. This study involved algorithm development, participant recruitment, IRB approval, custom-design of a data acquisition module, and data collection. The self-selected moving speeds for walking and running (slow and fast) and the structure of staircase degraded the performance of the algorithm. However, after similar activities were merged, the effects caused by the self-selection of speed were reduced. The experimental results show that the proposed algorithm performed better than conventional algorithms. Owing to its simplicity, the proposed algorithm could be applied to real-time applicaitons.


2020 ◽  
Vol 1 (2) ◽  
pp. 103-119
Author(s):  
Mihály Bodó

This paper deals with the sustainability under anoxic conditions of human beings, both when healthy, and diseased. As our attention is focused these days on the environment, sustainability, and green energy, a similar effort is being made in neuromonitoring to switch from invasive to noninvasive monitoring methods. Keys to these changes are computerization and shrinking size of electronic hardware. Computerization is going on in all areas of biomedical engineering, both in research and in clinical fields of medicine. In neurology, brain imaging is the most characteristic change in recent decades. These modalities of imaging (MRI, CT, PET scan, etc.) are predominantly utilized for localizing brain pathology. Brain imaging offers great spatial resolution, but poor time resolution. Therefore, for continuous monitoring, neurocritical care departments require an additional tool with good time resolution. There are invasive and noninvasive neuromonitoring methods. The standard method to monitor intracranial pressure (ICP) is an invasive method. Computerization allows for calculating the cerebral blood flow autoregulation (CBF AR) index (pressure reactivity index - PRx) from ICP and systemic arterial pressure (SAP) in real time, continuously, but invasively. The new development, discussed in this paper, is to calculate this index noninvasively by using rheoencephalography (REG), called REGx. We present the road to this invention and summarize multifold REG related results, such as using REG for primary stroke prevention screening, comparison incidence of arteriosclerotic risk factors, various studies by using CBF manipulations, and correlations with other neuromonitoring methods, and validation with in vitro and in vivo methods. REG by using different algorithms allow for real time calculation of autoregulated blood flow. This paper presents results of validation of CBF algorithms as an effective, noninvasive method. The author’s intent is to supply sufficient physiological background information. This review covers the author’s research efforts over several decades; it pertains multiple studies and has an updated addition to human sustainability by considering that Covid-19 is increasing stroke and cardiovascular disease (CVD) morbidity and mortality.


2013 ◽  
Vol 438-439 ◽  
pp. 1084-1088
Author(s):  
Ummin Okumura ◽  
Yu Jie Qi ◽  
Yun Long ◽  
Tian Hang Zhang

Based on the platform of LabVIEW, a set of roller intelligent detecting system is developed. With this system, it is easy to realize functions of fast nondestructive testing of subgrade compaction degree, roller speed, rollers compaction trajectory, compaction times, GPS real-time positioning as well as saving and printing report forms. Compared with traditional detection methods, this detecting system can test and control on-site compaction quality much more easily, in order to speed up the construction progress, improve the quality of subgrade compaction, control and manage compaction work better.


Sign in / Sign up

Export Citation Format

Share Document