scholarly journals Diversity and Abundance of Insects at the Campus of Higher Polytechnic Institute of Manica, Mozambique

Author(s):  
António C. Manhice

The aim of this study was to assess insect diversity and abundance at the Campus of Higher Polytechnic Institute of Manica, Mozambique. Collection of insects was carried out by pitfall traps a long linear transects and sweep nets during 21 days of October 2019. Data were analyzed using descriptive statistical and Shannon diversity index. A total of 1780 individuals of insects belonging to 8 orders, 15 families and 27 species were collected. Highest relative abundance was observed in Hymenoptera order (92.64%), and the least were Blattodea (2.70%), Diptera (2.13%), Coleoptera (0.82%), Orthoptera (1.52%), Phasmatodea (0.06%), Mantodea (0.28%) and Hemiptera (0.11%). The abundant specie was Crematogaster peringueyi (Hymenoptera) with 89.83% follwed by Macrotermes natalensis (Blattodea) and Chrysonmya chloropyga (Diptera) with 2.47% and 1.63% respectively. Higher insect diversity was observed in Orthoptera order (Shannon, H'=1.76), while the orders Coleoptera, Diptera, Hymenoptera, Blattodea, Phasmatodea, Hemiptera, had the lowest diversity (Shannon, H'<1). Further work need to be done in the study area, expanding the duration of the study and applying diversity sampling techniques.

2020 ◽  
Vol 35 (1) ◽  
pp. 11-20
Author(s):  
Tulsi Raj Adhikari ◽  
Shubha Ratna Shakya ◽  
Shambhu Adhikari ◽  
Indra Prasad Subedi

The study assesses the diversity of ground-dwelling ants (Hymenoptera: Formicidae) in Phulchowki Hill, Lalitpur, Nepal focusing their species richness altitudinally and seasonally. Ants were sampled from June 2018 to February 2019using pitfall traps, bait traps and hand collection methods covering an altitudinal range from 1500 m to 2700 m in five selected sites (1500 m, 1800 m, 2100 m,2400 m, and 2700 m). A total of 1443 specimens representing four subfamilies, 12genera and 18 morph species were collected. Formicinae (57.58%) was recorded as the most abundant subfamily followed by Myrmicinae (38.53%), Ponerinae (2.21%) and Pseudomyrmicinae (1.66%). Camponotus was the most speciose (4morphospecies) genus and was most abundant in all seasons. The highest Similarity index (0.667) was recorded between the first and second sites among five sites. Species richness (16), Shannon diversity index (1.504) and abundance (631) were the highest in autumn. Similarly, species richness (12), Shannon diversity index (1.399) and species evenness (0.563) were recorded highest at 2100 m altitude, while species abundance (519) was maximum at 1500 m.


2012 ◽  
Vol 12 (3) ◽  
pp. 94-98 ◽  
Author(s):  
Denise Brancher ◽  
Margarida Flores Roza-Gomes

Among the edaphic Hexapods, the insects are more abundant and important in that they act as environmental indicators. This study aimed to conduct a survey of the edaphic fauna in a forest fragment of transition from ombrophilous forest to mixed seasonal deciduous forest in the municipality of Anchieta, SC, Brazil. Samples were collected every fortnight from May to August 2010 by using the method of pitfall traps. Were collected 6598 individuals. The groups more abundant was Hymenoptera with 3398 individuals (51%), Collembola with a total of 1370 individuals (21%) and Diptera represented by 910 individuals (14%). The Simpson Index was found 0.60 and the Shannon Diversity Index was 3.00. The results obtained show that the place studied by provide conditions of survival to susceptible species such as Collembola, indicated a good quality of the soil study.


2020 ◽  
Vol 31 (3) ◽  
pp. 77-90
Author(s):  
Yendra Pratama Setyawan ◽  
Wakhid Wakhid ◽  
Suhadi Suhadi

Mangrove restoration in Trenggalek, East Java has resulted an age variation of mangrove ecosystem. Diverse species of insects predominantly found in mangroves were collected using yellow pan traps, swipe nets and by direct picking from three different sites. This research was conducted from April until August 2015. There are 9,181 individual insects associated with mangroves comprised of 42 species from 31 families and eight orders. The first site or the 15 years old mangrove (66.22% canopy cover) indicated the highest Shannon diversity index at 2.54, Evenness index of 0.32 and Margalef richness index of 4.84. The lowest diversity was recorded in the third site or the five years old mangrove (19.65% canopy cover), with the Shannon diversity index at 2.28, Evenness index at 0.26 and Margalef richness index at 4.59. The most abundant species located was the Eristena mangalis, with 1,724 individuals (relative abundance of 18.78%), followed by Monolepta sp. with 1,649 individuals (relative abundance of 17.96%). These are the phytophagous insects associated with mangrove leaves. This study concluded that the older mangrove ecosystem have a denser canopy that supports insect life.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 464
Author(s):  
Frank Nielsen

We generalize the Jensen-Shannon divergence and the Jensen-Shannon diversity index by considering a variational definition with respect to a generic mean, thereby extending the notion of Sibson’s information radius. The variational definition applies to any arbitrary distance and yields a new way to define a Jensen-Shannon symmetrization of distances. When the variational optimization is further constrained to belong to prescribed families of probability measures, we get relative Jensen-Shannon divergences and their equivalent Jensen-Shannon symmetrizations of distances that generalize the concept of information projections. Finally, we touch upon applications of these variational Jensen-Shannon divergences and diversity indices to clustering and quantization tasks of probability measures, including statistical mixtures.


2016 ◽  
Vol 51 (8) ◽  
pp. 958-966 ◽  
Author(s):  
Anderson Pedro Bernardina Batista ◽  
José Márcio de Mello ◽  
Marcel Régis Raimundo ◽  
Henrique Ferraço Scolforo ◽  
Aliny Aparecida dos Reis ◽  
...  

Abstract: The objective of this work was to analyze the spatial distribution and the behavior of species richness and diversity in a shrub savanna fragment, in 2003 and 2014, using ordinary kriging, in the state of Minas Gerais, Brazil. In both evaluation years, the measurements were performed in a fragment with 236.85 hectares, in which individual trees were measured and identified across 40 plots (1,000 m2). Species richness was determined by the total number of species in each plot, and diversity by the Shannon diversity index. For the variogram study, spatial models were fitted and selected. Then, ordinary kriging was applied and the spatial distribution of the assessed variables was described. A strong spatial dependence was observed between species richness and diversity by the Shannon diversity index (<25% spatial dependence degree). Areas of low and high species diversity and richness were found in the shrub savanna fragment. Spatial distribution behavior shows relative stability regarding the number of species and the Shannon diversity index in the evaluated years.


2015 ◽  
Vol 7 (15) ◽  
pp. 8272 ◽  
Author(s):  
Girish Gogoi ◽  
Vipin Parkash

<p>Hollongapar Gibbon Wildlife Sanctuary is comprised of five distinct compartments.  A total of 138 species of gilled mushrooms belonging to 48 genera, 23 families, five orders of the class Agaricomycetes, division Basidiomycota, have been collected and analyzed. The order Agaricales was was found with the highest number of species (113), followed by Russulales (14), Polyporales (5), Cantharellales (4) and Boletales (2). The species <em>Coprinellus disseminatus </em>and <em>Megacollybia rodmani</em> have shown the highest (8.26) and the lowest density (0.05), respectively.  A total of 24 species, e.g., <em>Termitomyces albuminosus, Marasmius curreyi, Marasmiellus candidus, Leucocoprinus medioflavus, Mycena leaiana, Hygrocybe miniata, Collybia chrysoropha, Gymnopus confluens</em> were common with frequency percentage of 11.9, whereas <em>Megacollybia rodmani</em> with less frequency percentage (2.4) was found only in few quadrates of the sanctuary.  The highly abundant species were <em>Termitomyces medius</em> (91.7) and <em>Coprinellus disseminatus </em>(86.8), and less abundant species were <em>Psilocybe wayanadensis</em> (1.0) and <em>Lepiota</em> sp. (1.0) in the study site.  The order of the species richness index (<em>R</em>) compartment wise was 2&gt;3&gt;4&gt;5&gt;1. Both the Shannon diversity index and Simpson diversity index of agarics was maximum (1.88, 0.98) in compartment 2, whereas minimum (1.72, 0.95) in compartment 1 and 5, respectively.  Moreover, the compartment 2 was found very much similar with compartment 3 and very less similar with compartment 1.</p><div> </div>


Author(s):  
Sumayyah Aimi Mohd Najib

To determine the soil erosion in ungauged catchments, the author used 2 methods: Universal Soil Loss Equation model and sampling data. Sampling data were used to verify and validate data from model. Changing land use due to human activities will affect soil erosion. Land use has changed significantly during the last century in Pulau Pinang. The main rapid changes are related to agriculture, settlement, and urbanization. Because soil erosion depends on surface runoff, which is regulated by the structure of land use and brought about through changes in slope length, land-use changes are one of many factors influencing land degradation caused by erosion. The Universal Soil Loss Equation was used to estimate past soil erosion based on land uses from 1974 to 2012. Results indicated a significant increase in three land-use categories: forestry, built-up areas, and agriculture. Another method to evaluate land use changes in this study was by using landscape metrics analysis. The mean patch size of built-up area and forest increased, while agriculture land use decreased from 48.82 patches in 1974 to 22.46 patches in 2012. Soil erosion increased from an estimated 110.18 ton/km2/year in 1974 to an estimated 122.44 ton/km2/year in 2012. Soil erosion is highly related (R2 = 0.97) to the Shannon Diversity Index, which describes the diversity in land-use composition in river basins. The Shannon Diversity Index also increased between 1974 and 2012. The findings from this study can be used for future reference and for ungauged catchment research studies.


2016 ◽  
Vol 12 (3) ◽  
pp. 119-130 ◽  
Author(s):  
A.H.D. Janabi ◽  
A.S. Biddle ◽  
D. Klein ◽  
K.H. McKeever

Exercise has a significant effect on different physiological systems in the body of human and animals. Only limited numbers of published studies in laboratory animals or humans have shown the effect of exercise on the gut microbiota, and no studies have shown this effect in horses. In this study, 8 horses (4 mares, 4 geldings) were exercise trained for 12 weeks, and 4 additional mares were used as a parallel seasonal control. To identify bacterial community changes over time for both groups, rectal faecal samples were collected, DNA was extracted, and the 16S rRNA gene (V3-V4) was sequenced using the Illumina Miseq platform. One-way ANOVA, Shannon diversity index, and Principal Coordinate Analysis (PCoA) were used to identify differences between and among samples. The exercise training group showed significant changes in the levels of Bacteroidetes, Proteobacteria, and Spirochaetes phyla (P<0.05), while there were no changes in the gut microbiota of the seasonal control group through the three months of the study (P>0.05). Moreover, with training two genera significantly changed in their relative abundance over time, namely Clostridium and Dysgonomonas (P<0.05). Dysgonomonas spp. was significantly changed in abundance during the exercise training period (P<0.05). Also Treponema spp. showed significant changes during the exercise training period (P<0.05). Shannon diversity index was decreased (P<0.05) in the exercise group at the beginning of the study, but then returned to pre-training levels. PCoA showed significant separation between time points of the exercise training group as far as the levels of genera and species (P<0.05) represented. Our results show that exercise training influences the gut microbiota, especially at the beginning of training.


2021 ◽  
Author(s):  
Babatunde Odetoyin ◽  
Olawumi Ogundipe ◽  
Adebola Onanuga

Abstract BackgroundDiarrhoeagenic Escherichia coli (DEC) strains are common bacterial causes of morbidity and mortality in young children. Waterborne DEC could pose a potential health risk to humans through domestic use of contaminated water. However, epidemiological studies on DEC strains in drinking water are scarce in Nigeria. This study determined the prevalence, diversity and factors associated with the presence of DEC in dug wells in Ile-Ife, southwestern Nigeria.MethodsWe assessed 143 wells for safety by coliform count using the multiple tube technique. A standardized questionnaire was used to obtain relevant information about the wells and their owners. Contaminating isolates were identified as E. coli by amplifying their 16S rRNA gene. Five DEC pathotypes comprising enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC) enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC) and Shiga-toxin producing E. coli (STEC) were detected using two sets of multiplex PCR assays. Isolates diversity was determined by (GTG)5 Repetitive element palindromic PCR and Shannon diversity index. Multivariate logistic regression analysis was used to identify associated risk factors. Results Fifty-eight (40.6%) wells were contaminated by diarrhoeagenic E. coli. Wells with dirty platforms, damaged by erosion and sited near septic tanks significantly harboured DEC (p<0.05). There was a preponderance of STEC among the isolates with nine isolates carrying multiple diarrhoeagenic genes and 10 (17.2%) wells contaminated by multiple DEC strains. The (GTG)5-PCR fingerprinting assigned all DEC strains into six clades, with an overall Shannon diversity index of 18.87. A diverse profile was obtained among and between the isolates recovered from different sources.ConclusionsThe presence of DEC strains in drinking water highlights the risk to human health associated with the use of untreated water. There was a high degree of genetic diversity among the isolates implying multiple sources of contamination. There is a need for periodic sanitation and inspection of wells for cracks to prevent seepages and possible outbreaks of waterborne diseases.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12067
Author(s):  
Rehema Liyai ◽  
Gathii Kimita ◽  
Clement Masakhwe ◽  
David Abuom ◽  
Beth Mutai ◽  
...  

Background There is a global increase in reports of emerging diseases, some of which have emerged as spillover events from wild animals. The spleen is a major phagocytic organ and can therefore be probed for systemic microbiome. This study assessed bacterial diversity in the spleen of wild caught small mammals so as to evaluate their utility as surveillance tools for monitoring bacteria in an ecosystem shared with humans. Methods Fifty-four small mammals (rodents and shrews) were trapped from different sites in Marigat, Baringo County, Kenya. To characterize their bacteriome, DNA was extracted from their spleens and the V3–V4 regions of the 16S rRNA amplified and then sequenced on Illumina MiSeq. A non-target control sample was used to track laboratory contaminants. Sequence data was analyzed with Mothur v1.35, and taxomy determined using the SILVA database. The Shannon diversity index was used to estimate bacterial diversity in each animal and then aggregated to genus level before computing the means. Animal species within the rodents and shrews were identified by amplification of mitochondrial cytochrome b (cytb) gene followed by Sanger sequencing. CLC workbench was used to assemble the cytb gene sequences, after which their phylogenetic placements were determined by querying them against the GenBank nucleotide database. Results cytb gene sequences were generated for 49/54 mammalian samples: 38 rodents (Rodentia) and 11 shrews (Eulipotyphyla). Within the order Rodentia, 21 Acomys, eight Mastomys, six Arvicanthis and three Rattus were identified. In the order Eulipotyphyla, 11 Crucidura were identified. Bacteria characterization revealed 17 phyla that grouped into 182 genera. Of the phyla, Proteobacteria was the most abundant (67.9%). Other phyla included Actinobacteria (16.5%), Firmicutes (5.5%), Chlamydiae (3.8%), Chloroflexi (2.6%) and Bacteroidetes (1.3%) among others. Of the potentially pathogenic bacteria, Bartonella was the most abundant (45.6%), followed by Anaplasma (8.0%), Methylobacterium (3.5%), Delftia (3.8%), Coxiella (2.6%), Bradyrhizobium (1.6%) and Acinetobacter (1.1%). Other less abundant (<1%) and potentially pathogenic included Ehrlichia, Rickettsia, Leptospira, Borrelia, Brucella, Chlamydia and Streptococcus. By Shannon diversity index, Acomys spleens carried more diverse bacteria (mean Shannon diversity index of 2.86, p = 0.008) compared to 1.77 for Crocidura, 1.44 for Rattus, 1.40 for Arvicathis and 0.60 for Mastomys. Conclusion This study examined systemic bacteria that are filtered by the spleen and the findings underscore the utility of 16S rRNA deep sequencing in characterizing complex microbiota that are potentially relevant to one health issues. An inherent problem with the V3-V4 region of 16S rRNA is the inability to classify bacteria reliably beyond the genera. Future studies should utilize the newer long read methods of 16S rRNA analysis that can delimit the species composition.


Sign in / Sign up

Export Citation Format

Share Document