Conductive Coatings of 2D MXene-in Water for Electronics Applications: A Recent Study

Author(s):  
T. Radhika
Keyword(s):  
Author(s):  
Michael W. Bench ◽  
Jason R. Heffelfinger ◽  
C. Barry Carter

To gain a better understanding of the surface faceting that occurs in α-alumina during high temperature processing, atomic force microscopy (AFM) studies have been performed to follow the formation and evolution of the facets. AFM was chosen because it allows for analysis of topographical details down to the atomic level with minimal sample preparation. This is in contrast to SEM analysis, which typically requires the application of conductive coatings that can alter the surface between subsequent heat treatments. Similar experiments have been performed in the TEM; however, due to thin foil and hole edge effects the results may not be representative of the behavior of bulk surfaces.The AFM studies were performed on a Digital Instruments Nanoscope III using microfabricated Si3N4 cantilevers. All images were recorded in air with a nominal applied force of 10-15 nN. The alumina samples were prepared from pre-polished single crystals with (0001), , and nominal surface orientations.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Junjie Shu ◽  
Yang Wang ◽  
Bei Guo ◽  
Weihua Qin ◽  
Lanxuan Liu ◽  
...  

Silver-based high-conductivity coatings are used in many advanced manufacturing equipment and components, and existing coatings require high-temperature curing. This paper studies the effects of different curing agents on the electrical properties of low-temperature curing (<100 °C) conductive coatings, and analyzes the effects of different curing temperatures and curing time on the surface resistance, square resistance and resistivity of conductive coatings. The response surface method in Design Expert was used to construct the model, and the curing thermodynamics of different curing agents were analyzed by DSC. It was found that curing agents with lower Tm and activation energy, higher pre-exponential factor and more flexible segments are beneficial to the preparation of highly conductive coatings.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1890
Author(s):  
Monika Rdest ◽  
Dawid Janas

This perspective article describes the application opportunities of carbon nanotube (CNT) films for the energy sector. Up to date progress in this regard is illustrated with representative examples of a wide range of energy management and transformation studies employing CNT ensembles. Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can be produced. Then, the capabilities for their application in specific energy-related scenarios are described. Among the highlighted cases are conductive coatings, charge storage devices, thermal interface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant, and mechanical energy can be converted from one form to another using such formulations based on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the research community will take to bring these concepts closer to implementation.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 774-777 ◽  
Author(s):  
J. CARDOSO ◽  
O. GOMEZ-DAZA ◽  
L. IXTLILCO ◽  
M. T. S. NAIR ◽  
P. K. NAIR

Copper sulfide thin films of 75 nm and 100 nm thickness were coated on Kapton foils (PI) of 25 nm thickness by floating them on a chemical bath. The foils were annealed at 150°C-400°C in N 2 converting the coating from CuS to Cu 1.8 S . The sheet resistance of the annealed coatings (100 nm) is 10-50 ohms/square which is almost unaltered after immersion in dilute HCl for 30-120 min. The infrared reflectance predicted for the coatings is 67%-77% at a wavelength 2.5 μm, which is nearly what is experimentally observed. The coated PI has a transmittance (25-35%) peak located around 550-600 nm. These thermally stable conductive coatings on PI foils might be used as conductive substrates for optoelectronic device structures.


1988 ◽  
Vol 20 (1) ◽  
pp. 54-69 ◽  
Author(s):  
John T. Hoback ◽  
John J. Reilly

2020 ◽  
Vol 71 (05) ◽  
pp. 432-437
Author(s):  
Ion Razvan Radulescu ◽  
Lilioara Surdu ◽  
Bogdana Mitu ◽  
Cristian Morari ◽  
Marian Costea ◽  
...  

Fabrics for electromagnetic shielding are especially relevant in nowadays context, contributing to human’s protection and wellbeing and to proper functioning of electronic equipment, in relation to electromagnetic compatibility. Fabrics with electromagnetic shielding properties employ two main technologies, namely insertion of conductive yarns and application of conductive coatings. Magnetron sputtering is a modern technology to enable conductive coatings with thickness in the range of nanometers onto fabrics. This paper aims to analyze contribution of various conductive textile structures out of both fabrics with inserted conductive yarns and coatings to Electromagnetic shielding effectiveness (EMSE). EMSE was measured in the frequency range of 0.1–1000 MHz by using a TEM cell according to standard ASTM ES-07. Results show a gain of 10–25 dB when introducing silver yarns in warp/ weft direction, a variation of 5–35 dB between conductive yarns out of silver and stainless steel and an up to 12 dB gain out of thin copper coating by magnetron plasma onto the fabrics with inserted conductive yarns


Sign in / Sign up

Export Citation Format

Share Document