Potential of Bioactive Compounds of Holothuria atra- Associated Bacteria as a Raw Material in Bioindustry

2021 ◽  
pp. 66-75
Author(s):  
Delianis Pringgenies ◽  
Gunawan Widi Santosa ◽  
Ali Djunaedi ◽  
A. B. Susanto
Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3786
Author(s):  
Elena Cristea ◽  
Aliona Ghendov-Mosanu ◽  
Antoanela Patras ◽  
Carmen Socaciu ◽  
Adela Pintea ◽  
...  

Recent trends in the food industry combined with novel methods in agriculture could transform rowan into a valuable raw material with potential technological applications. Thus, the aim of this research was to investigate the content of bioactive compounds in its fruits and to assess the color and antioxidant stability of the extracts prepared from such fruits during various thermal treatments and at different pH and ionic strength values. Various spectrophotometric methods, HPLC, and capillary electrophoresis were used to quantify the concentrations of bioactive compounds—polyphenols, carotenoids, organic acids, and to assess antioxidant activity and color. The results show that rowan berries contain circa 1.34–1.47 g/100 g of polyphenols among which include catechin, epicatechin, ferulic acid methyl ester, procyanidin B1, etc.; ca 21.65 mg/100 g of carotenoids including zeaxanthin, β-cryptoxanthin, all-trans-β-carotene, and various organic acids such as malic, citric, and succinic, which result in a high antioxidant activity of 5.8 mmol TE/100 g. Results also showed that antioxidant activity exhibited high stability when the extract was subjected to various thermal treatments, pHs, and ionic strengths, while color was mainly impacted negatively when a temperature of 100 °C was employed. This data confirms the technological potential of this traditional, yet often overlooked species.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 788
Author(s):  
João Paulo de Lima Ferreira ◽  
Alexandre José de Melo Queiroz ◽  
Rossana Maria Feitosa de Figueirêdo ◽  
Wilton Pereira da Silva ◽  
Josivanda Palmeira Gomes ◽  
...  

The residue generated from the processing of Tacinga inamoena (cumbeba) fruit pulp represents a large amount of material that is discarded without proper application. Despite that, it is a raw material that is source of ascorbic acid, carotenoids and phenolic compounds, which are valued in nutraceutical diets for allegedly combating free radicals generated in metabolism. This research paper presents a study focused on the mathematical modeling of drying kinetics and the effect of the process on the level of bioactive of cumbeba residue. The experiments of cumbeba residue drying (untreated or whole residue (WR), crushed residue (CR) and residue in the form of foam (FR)) were carried out in a fixed-bed dryer at four air temperatures (50, 60, 70 and 80 °C). Effective water diffusivity (Deff) was determined by the inverse method and its dependence on temperature was described by an Arrhenius-type equation. It was observed that, regardless of the type of pretreatment, the increase in air temperature resulted in higher rate of water removal. The Midilli model showed better simulation of cumbeba residue drying kinetics than the other models tested within the experimental temperature range studied. Effective water diffusivity (Deff) ranged from 6.4890 to 11.1900 × 10−6 m2/s, 2.9285 to 12.754 × 10−9 m2/s and 1.5393 × 10−8 to 12.4270 × 10−6 m2/s with activation energy of 22.3078, 46.7115 and 58.0736 kJ/mol within the temperature range of 50–80 °C obtained for the whole cumbeba, crushed cumbeba and cumbeba residue in the form of foam, respectively. In relation to bioactive compounds, it was observed that for a fixed temperature the whole residue had higher retention of bioactive compounds, especially phenolic compounds, whereas the crushed residue and the residue in the form of foam had intermediate and lower levels, respectively. This study provides evidence that cumbeba residue in its whole form can be used for the recovery of natural antioxidant bioactive compounds, mainly phenolic compounds, with the possibility of application in the food and pharmaceutical industries.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 386
Author(s):  
Natalia Matłok ◽  
Józef Gorzelany ◽  
Adam Figiel ◽  
Maciej Balawejder

The study presents the effects of fertilisation on selected quality parameters of the dried material obtained from plants of lovage and coriander. During the crop production process, the plants were treated with two fertilisers containing substances potentially acting as elicitors. The dried material was obtained in course of a drying process carried out in optimum conditions and based on the CD-VMFD method which combines convective pre-drying (CD) at a low temperature (40 °C) with vacuum-microwave finish drying with the use of 240 W microwaves (VMFD). The quality of the dried material was evaluated through measurement of the total contents of polyphenols, total antioxidant potential (ABTS and DPPH method), and the profile of volatile compounds (headspace-solid phase microextractio-HS-SPME) as well as assessment of the colour. It was found that by applying first fertilisation (with organic components) it is possible to significantly increase the contents of both bioactive compounds and volatile substances responsible for the aroma. It was determined that the higher content of bioactive compounds was related to the composition of the first fertiliser, presumably the extract from common nettle. The study showed that the application of the first fertiliser contributed to enhanced quality parameters of the raw material obtained.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 46
Author(s):  
Mariana de Oliveira Silva ◽  
John Nonvignon Bossis Honfoga ◽  
Lorena Lucena de Medeiros ◽  
Marta Suely Madruga ◽  
Taliana Kênia Alencar Bezerra

Coffee husks (Coffea arabica L.) are characterized by exhibiting secondary metabolites such as phenolic compounds, which can be used as raw material for obtaining bioactive compounds of interest in food. The objective of this study is to evaluate different methods for obtaining the raw material and extracting solutions of bioactive compounds from coffee husks. Water bath and ultrasound-assisted extraction methods were used, using water (100%) or ethanol (100%) or a mixture of both (1:1) as extracting solutions and the form of the raw material was in natura and dehydrated. The extracts were evaluated by their antioxidant potential using DPPH radicals, ABTS, and iron reduction (ferric reducing antioxidant power (FRAP)), and later total phenolic compounds, total flavonoids, and condensed tannins were quantified the phenolic majority compounds were identified. It was verified that the mixture of water and ethanol (1:1) showed better extraction capacity of the compounds with antioxidant activity and that both conventional (water bath) or unconventional (ultrasound) methods showed satisfactory results. Finally, a satisfactory amount of bioactive compounds was observed in evaluating the chemical composition (total phenolic compounds, total flavonoids, condensed tannins, as well as the analysis of the phenolic profile) of these extracts. Corroborating with the results of the antioxidant activities, the best extracting solution was generally the water and ethanol mixture (1:1) using a dehydrated husk and water bath as the best method, presenting higher levels of the bioactive compounds in question, with an emphasis on chlorogenic acid. Thus, it can be concluded that the use of coffee husk as raw material to obtain extracts of bioactive compounds is promising. Last, the conventional method (water bath) and the water and ethanol mixture (1:1) stood out among the methods and extracting solutions used for the dehydrated coffee husk.


SpringerPlus ◽  
2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Devaraj Isaac Dhinakaran ◽  
Aaron Premnath Lipton

2016 ◽  
Vol 68 (11-12) ◽  
pp. 1048-1054 ◽  
Author(s):  
Antonela Guadalupe Garzón ◽  
Roberto Luis Torres ◽  
Silvina Rosa Drago

2018 ◽  
Vol 14 (3) ◽  
pp. 221-229 ◽  
Author(s):  
Aris Tri Wahyudi ◽  
Jepri Agung Priyanto ◽  
Wenang Maharsiwi ◽  
Rika Indri Astuti

2017 ◽  
Author(s):  
◽  
Jihyun Park

Annually, more than 6 million tons of spent coffee grounds (SCG) are generated worldwide. The present study explores the possible use of spent coffee grounds as the raw materials for cosmetics industry. The main objective of this project are to investigate the chemical profiles and identify the bioactive compounds for cosmetics application through global metabolite analysis. The compounds extracted from SCG of Ethiopia coffee (Yirgacheffe), Costa Rican coffee (Tarrazu) and Hawaiian coffee (Kona) were analyzed by ultra-high pressure liquid chromatography coupled with mass spectrometry (UPLC-MS). The ion chromatograms were submitted to XCMS platform operated by Center for Metabolomics at the Scripps Research Institute. The peak detection, peak grouping, spectra extraction, and retention alignment were processed by XCMS. The spectra were annotated and the compounds were identified and categorized by integration with METLIN, the world's largest metabolite database. Multivariate and univariate statistical analysis including PCA and cloud-plot were performed by XCMS to compare the chemical profiles between the three coffee cultivars. These analyses indicated that each cultivar showed a specific cluster. Over 200 compounds related to anti-oxidant, anti-inflammatory, anti-tyrosinase and anti-tumor for skin care application were identified by XCMS. Therefore, the presence of bioactive compounds in SCG makes it a potential source of raw material for cosmetic application (e.g., anti-oxidant, anti-inflammatory, skin-whiting, and anti-aging).


2021 ◽  
Vol 12 (5) ◽  
pp. 6833-6844

Pineapple (Ananas comosus (L.) Merril), one of the major fruit crops, is mainly used for raw consumption and for industrial juice production, which creates large amounts of residues. The United Nations Food and Agriculture Organization (FAO) has estimated that pineapple waste accounts for between 50 to 65 % of the total weight of the fruit. Industrial pineapple waste is a major source of pollution as important quantities of primary residues are not further processed. Pineapple waste contains bioactive compounds such as carotenoids, polyphenols, fibers, vitamins, enzymes, and essential oils. These phytochemicals can be used in the food industry, medicine and pharmacy, textile, and others. This review highlights essential oil and other bioactive compounds extracted from pineapple waste and the composition of pineapple essential oil. Pineapple peels are the potential raw material for essential oil extraction through various methods. Modern spectrometric methods have shown that essential oil extracted from pineapple waste comprises esters, alcohols, aldehydes, and ketones. From this overview, it can be concluded that there is an important need for further research into pineapple waste as a potential source of valuable byproducts, as well as new techniques to studying industrial organic residuals to achieve higher recovery rates of valuable bioactive compounds used in pharmaceuticals, cosmetic and chemical industries as well as for developing new functional foods.


Sign in / Sign up

Export Citation Format

Share Document