scholarly journals In silico Molecular Docking Analysis of Imatinib to Target the Marker Proteins of Breast Cancer

Author(s):  
V. Senthil Kumar ◽  
T. V. Ajay Kumar ◽  
V. Parthasarathy

Cancer is an uncontrolled over growth of abnormal cells elsewhere in the body. It is the second leading cause of death globally due to non communicable disease. Among the various types of cancers, the incidence of breast cancer is next to lung cancer. The most commonly used drugs to treat breast cancer are namely, Anastrozole, Arimidex, Letrozol, Imatinib, Tamoxifen, Raloxifene, Toremifene and so on. The hope is to establish the specificity of the drug Imatinib towards the selective potential breast cancers such as mammalian target of rapamycin, (mTOR), human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), poly (ADP-Ribose) polymerase (PARP) and phosphoprotein 53 (p53). To identify the promising target, the Schrodinger software was utilized for the study. The study helped to evaluate the pharmacokinetic properties and binding efficiency of Imatinib towards the breast cancer proteins. The results of study showed that the Imatinib exhibited better binding affinities to mTOR and HER2 as compared to ER, PARP and P53 proteins. The present study will be more useful to rationalize the anticancer therapy based on the expression levels of the target protein in the cancer microenvironment.   

2014 ◽  
Vol 8 ◽  
pp. BCBCR.S9453 ◽  
Author(s):  
Adam M. Brufsky

Human epidermal growth factor receptor-2 (HER2) is overexpressed in up to 30% of breast cancers; HER2 overexpression is indicative of poor prognosis. Trastuzumab, an anti-HER2 monoclonal antibody, has led to improved outcomes in patients with HER2-positive breast cancer, including improved overall survival in adjuvant and first-line settings. However, a large proportion of patients with breast cancer have intrinsic resistance to HER2-targeted therapies, and nearly all become resistant to therapy after initial response. Elucidation of underlying mechanisms contributing to HER2 resistance has led to development of novel therapeutic strategies, including those targeting HER2 and downstream pathways, heat shock protein 90, telomerase, and vascular endothelial growth factor inhibitors. Numerous clinical trials are ongoing or completed, including phase 3 data for the mammalian target of rapamycin inhibitor everolimus in patients with HER2-resistant breast cancer. This review considers the molecular mechanisms associated with HER2 resistance and evaluates the evidence for use of evolving strategies in patients with HER2-resistant breast cancer.


2007 ◽  
Vol 25 (36) ◽  
pp. 5815-5824 ◽  
Author(s):  
V. Craig Jordan ◽  
Bert W. O'Malley

Selective estrogen-receptor (ER) modulators (SERMs) are synthetic nonsteroidal compounds that switch on and switch off target sites throughout the body. Tamoxifen, the pioneering SERM, blocks estrogen action by binding to the ER in breast cancers. Tamoxifen has been used ubiquitously in clinical practice during the last 30 years for the treatment of breast cancer and is currently available to reduce the risk of breast cancer in high-risk women. Raloxifene maintains bone density (estrogen-like effect) in postmenopausal osteoporotic women, but at the same time reduces the incidence of breast cancer in both high- and low-risk (osteoporotic) postmenopausal women. Unlike tamoxifen, raloxifene does not increase the incidence of endometrial cancer. Clearly, the simple ER model of estrogen action can no longer be used to explain SERM action at different sites around the body. Instead, a new model has evolved on the basis of the discovery of protein partners that modulate estrogen action at distinct target sites. Coactivators are the principal players that assemble a complex of functional proteins around the ligand ER complex to initiate transcription of a target gene at its promoter site. A promiscuous SERM ER complex creates a stimulatory signal in growth factor receptor–rich breast or endometrial cancer cells. These events cause drug-resistant, SERM-stimulated growth. The sometimes surprising pharmacology of SERMs has resulted in a growing interest in the development of new selective medicines for other members of the nuclear receptor superfamily. This will allow the precise treatment of diseases that was previously considered impossible.


2021 ◽  
pp. 107815522199163
Author(s):  
Homa Seyedmirzaei ◽  
Mahsa Keshavarz-Fathi ◽  
Sepideh Razi ◽  
Masoumeh Gity ◽  
Nima Rezaei

Objective Breast cancer is responsible for most of the cancer-induced deaths in women around the world. The current review will discuss different approaches of targeting HER2, an epidermal growth factor overexpressed in 30% of breast cancer cases. Data sources We conducted a search on Pubmed and Scopus databases to find studies relevant to HER2+ breast cancers and targeting HER2 as means of immunotherapy. Out of 1043 articles, 105 studies were included in this review. Data summary As well as the introduction of HER2 and breast cancer subtypes, we discussed various aspects of HER2-targeting immunotherapy including monoclonal antibodies, Antibody-drug conjugates (ADCs), Chimeric Antigen Receptor (CAR) T-cells and vaccines. Conclusions Despite several ways of controlling breast cancer, the need to investigate new drugs and approaches seems to be much significant as this cancer still has a heavy burden on people’s health and survival.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Ayca Gucalp ◽  
Tiffany A. Traina

Triple-negative breast cancer (TNBC), a subtype distinguished by negative immunohistochemical assays for expression of the estrogen and progesterone receptors (ER/PR) and human epidermal growth factor receptor-2(HER2) represents 15% of all breast cancers. Patients with TNBC generally experience a more aggressive clinical course with increased risk of disease progression and poorer overall survival. Furthermore, this subtype accounts for a disproportionate number of disease-related mortality in part due to its aggressive natural history and our lack of effective targeted agents beyond conventional cytotoxic chemotherapy. In this paper, we will review the epidemiology, risk factors, prognosis, and the molecular and clinicopathologic features that distinguish TNBC from other subtypes of breast cancer. In addition, we will examine the available data for the use of cytotoxic chemotherapy in the treatment of TNBC in both the neoadjuvant and adjuvant setting and explore the ongoing development of newer targeted agents.


2010 ◽  
Vol 28 (18) ◽  
pp. 2966-2973 ◽  
Author(s):  
Marco Colleoni ◽  
Bernard F. Cole ◽  
Giuseppe Viale ◽  
Meredith M. Regan ◽  
Karen N. Price ◽  
...  

Purpose Retrospective studies suggest that primary breast cancers lacking estrogen receptor (ER) and progesterone receptor (PR) and not overexpressing human epidermal growth factor receptor 2 (HER2; triple-negative tumors) are particularly sensitive to DNA-damaging chemotherapy with alkylating agents. Patients and Methods Patients enrolled in International Breast Cancer Study Group Trials VIII and IX with node-negative, operable breast cancer and centrally assessed ER, PR, and HER2 were included (n = 2,257). The trials compared three or six courses of adjuvant classical cyclophosphamide, methotrexate, and fluorouracil (CMF) with or without endocrine therapy versus endocrine therapy alone. We explored patterns of recurrence by treatment according to three immunohistochemically defined tumor subtypes: triple negative, HER2 positive and endocrine receptor absent, and endocrine receptor present. Results Patients with triple-negative tumors (303 patients; 13%) were significantly more likely to have tumors > 2 cm and grade 3 compared with those in the HER2-positive, endocrine receptor–absent, and endocrine receptor–present subtypes. No clear chemotherapy benefit was observed in endocrine receptor–present disease (hazard ratio [HR], 0.90; 95% CI, 0.74 to 1.11). A statistically significantly greater benefit for chemotherapy versus no chemotherapy was observed in triple-negative breast cancer (HR, 0.46; 95% CI, 0.29 to 0.73; interaction P = .009 v endocrine receptor–present disease). The magnitude of the chemotherapy effect was lower in HER2-positive endocrine receptor–absent disease (HR, 0.58; 95% CI, 0.29 to 1.17; interaction P = .24 v endocrine receptor–present disease). Conclusion The magnitude of benefit of CMF chemotherapy is largest in patients with triple-negative, node-negative breast cancer.


2018 ◽  
Vol 10 ◽  
pp. 175883591881834 ◽  
Author(s):  
Adriana Matutino ◽  
Carla Amaro ◽  
Sunil Verma

The development of cyclin-dependent kinase (CDK) 4/6 inhibitors has been more prominent in hormone receptor (HR)-positive human epidermal growth factor receptor 2 (HER2)-negative breast cancers, with a significant improvement in progression-free survival (PFS) in first and later lines of metastatic breast cancer (MBC) therapy. Preclinical evidence suggests that there is activity of CDK4/6 inhibitors in nonluminal cell lines. Here, we present a review of the current preclinical and clinical data on the use of CDK inhibitors in HER2-positive and triple-negative breast cancer (TNBC).


2008 ◽  
Vol 26 (6) ◽  
pp. 897-906 ◽  
Author(s):  
Marta Guix ◽  
Nara de Matos Granja ◽  
Ingrid Meszoely ◽  
Theresa B. Adkins ◽  
Bobbye M. Wieman ◽  
...  

Purpose To administer the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib to patients with operable untreated breast cancer during the immediate preoperative period and to measure an antiproliferative and/or a proapoptotic effect in the post-therapy specimen and determine a biomarker profile associated with evidence of erlotinib-mediated cellular activity. Patients and Methods Newly diagnosed patients with stages I to IIIA invasive breast cancer were treated with erlotinib 150 mg/d orally for 6 to 14 days until the day before surgery. Erlotinib plasma levels were measured by tandem mass spectrometry the day of surgery. Drug-induced changes in tumor cell proliferation and apoptosis were assessed by Ki67 immunohistochemistry and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate-biotin nick-end labeling analysis, respectively, in biopsies from the pretherapy and surgical specimens. Biopsies were also evaluated for P-EGFR, P-HER-2, P-MAPK, P-Akt, P-S6, and S118 P-ERα. Results In drug-sensitive PC9 xenografts, 5 days of treatment with erlotinib were enough to induce a maximal inhibition of cell proliferation and induction of apoptosis. Forty-one patients completed preoperative treatment with erlotinib. Grade ≤ 2 rash and diarrhea were the main toxicities. Erlotinib inhibited tumor cell proliferation (Ki67), P-EGFR, and P-HER-2. The inhibition of proliferation occurred in estrogen receptor (ER) –positive but not in human epidermal growth factor receptor 2 (HER-2) –positive or triple-negative cancers. Treatment was associated with a significant reduction of P-MAPK, P-Akt, P-S6, and S118 P-ERα in hormone receptor–positive cancers. Conclusion A presurgical approach to evaluate cellular responses to new drugs is feasible in breast cancer. EGFR inhibitors are worthy of testing against ER-positive breast cancers but are unlikely to have clinical activity against HER-2–positive or triple-negative breast cancers.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 5009
Author(s):  
Swetha Vasudevan ◽  
Ibukun A. Adejumobi ◽  
Heba Alkhatib ◽  
Sangita Roy Chowdhury ◽  
Shira Stefansky ◽  
...  

Triple-negative breast cancer (TNBC) is an aggressive subgroup of breast cancers which is treated mainly with chemotherapy and radiotherapy. Epidermal growth factor receptor (EGFR) was considered to be frequently expressed in TNBC, and therefore was suggested as a therapeutic target. However, clinical trials of EGFR inhibitors have failed. In this study, we examine the relationship between the patient-specific TNBC network structures and possible mechanisms of resistance to anti-EGFR therapy. Using an information-theoretical analysis of 747 breast tumors from the TCGA dataset, we resolved individualized protein network structures, namely patient-specific signaling signatures (PaSSS) for each tumor. Each PaSSS was characterized by a set of 1–4 altered protein–protein subnetworks. Thirty-one percent of TNBC PaSSSs were found to harbor EGFR as a part of the network and were predicted to benefit from anti-EGFR therapy as long as it is combined with anti-estrogen receptor (ER) therapy. Using a series of single-cell experiments, followed by in vivo support, we show that drug combinations which are not tailored accurately to each PaSSS may generate evolutionary pressure in malignancies leading to an expansion of the previously undetected or untargeted subpopulations, such as ER+ populations. This corresponds to the PaSSS-based predictions suggesting to incorporate anti-ER drugs in certain anti-TNBC treatments. These findings highlight the need to tailor anti-TNBC targeted therapy to each PaSSS to prevent diverse evolutions of TNBC tumors and drug resistance development.


2018 ◽  
Author(s):  
Zahraa Al-Hilli ◽  
Judy C Boughey

Amplification of the human epidermal growth factor receptor–2 (HER-2) gene is found in approximately 15 to 30% of breast cancers. Historically, HER-2 overexpression has been associated with aggressive disease and a poor prognosis. However, the use of targeted anti-HER2 therapy has revolutionized the treatment of HER-2-positive disease, and the use of the monoclonal antibody trastuzumab in combination with chemotherapy is now standard of care for tumors greater than 1 cm in size and in node-positive disease. More recently, the value of dual-agent anti-HER-2 therapy has been demonstrated in large clinical trials. This review provides an overview of HER-2-positive breast cancer, its molecular basis, methods of identification, and treatment options and strategies. This review contains 2 figures and 70 references Key words: anti-HER-2 therapy, breast cancer, HER-2-positive breast cancer, HER-2 resistance, lapatinib, neoadjuvant chemotherapy, pertuzumab, small HER-2-positive breast cancer, trastuzumab


2017 ◽  
Vol 13 (5) ◽  
pp. 293-300 ◽  
Author(s):  
Vijayakrishna K. Gadi ◽  
Nancy E. Davidson

Triple negative is a term applied to breast cancers that do not meaningfully express the estrogen or progesterone hormone receptors or overexpress the human epidermal growth factor receptor 2 tyrosine kinase. At present, the only proven method for systemic management of triple-negative breast cancer for both early-stage and metastatic settings is cytotoxic chemotherapy. Here, we provide a comprehensive review of management strategies that are best supported by available data. We also review recent advances most likely to affect treatment of triple-negative breast cancer in the coming years with particular emphasis on targeted agents, biologics, and immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document