scholarly journals Geotechnical Properties of Termite Mound Soil as Construction Material

Author(s):  
Hammed A. Olayiwola ◽  
K. A. Apanpa ◽  
Anjorin, Ademola

This study investigates variation of termite mounds in relation to the control soils around our environment that are not hindered by the termites at various locations at The Polytechnic; Ibadan, Oyo State, southwest Nigeria. From the study area, five termitaria were selected at random. At the core of termitaria, soil samples were taken at a distance of 7.5m and 15m to the both side of termitaria. Twenty five (25 soil samples were collected in all and were subjected to geotechnical properties such as natural moisture content, grain size analysis, california bearing ratio (CBR) test, Atterberg’s limits, and unconfined compressive strength test. The results proved that termite mound soil have better geotechnical properties compared to surrounding control soil. The betterment was attributed to the activities of termites in termitaria thus increasing the strength parameters present in the soil.

2015 ◽  
Vol 773-774 ◽  
pp. 1438-1442 ◽  
Author(s):  
Siti Aimi Nadia Mohd Yusoff ◽  
I. Bakar ◽  
Devapriya Chitral Wijeyesekera ◽  
Adnan Zainorabidin ◽  
Aziman Madun

This paper compares some geotechnical properties of Kaolin, Laterite and Peat. Laterite was collected from Bukit Banang while Peat sample was collected from Parit Nipah, both locations were in Batu Pahat, Johor. Meanwhile, kaolin that was used in this research was manufactured kaolin. These soil samples were subjected to routine laboratory analysis and resulting data were analyzed statistically using a correlation analysis. A laboratory testing program consists of “Basic properties test” to obtain general information on the materials (e.g Natural moisture content, Atterberg Limit, Specific gravity, grain size analysis, chemical composition and pH) and “Geotechnical properties tests” to measure specific properties that characterize soil behaviour for design and constructability assessments (e.g Standard Proctor Test, Unconfined Compressive Strength and CBR).The results showed that the Natural/initial moisture content for laterite, peat and kaolin is 22.54%, 480.61% and 0.22% respectively. Meanwhile Specific gravity for each soil was in the range 1.50-2.79.It was also found that the pH of all soil is acidic which lay in the range of 3.76-5.95.The UCS for the optimally compacted sample of laterite is 445.77 kPa, kaolin is 199.23 kPa and for peat is 58.70 kPa. This paper summarizes the result of analysis performed on all tests conducted. Based on the results, the geotechnical property of the soil is a highly dependent with the type of soil and therefore, determining the soil characterization and the soil strength should be considered during the planning phase of any earthwork construction operation.


2021 ◽  
Vol 9 (1) ◽  
pp. 159-163
Author(s):  
Anuja Narayanan

The study is related to the comparison of soil characteristics in some areas from a depth of 1m, 1.2m, and 1.5m; physical and geotechnical properties of the soil samples are studied in the laboratory to develop a simple method to determine the type of soil on a site. The tests conducted are grain size analysis, specific gravity, and field density. Moreover, the research intends to validate the behavior of sieving systems for different types of soils and at various loading conditions. From work, a decision support system to facilitate a sieving system that integrates geological, geotechnical, and structural factors is developed. The study reveals that an increase in the plasticity index decreases the angle of internal friction. The empirical models developed with the help of regression analysis for the benefit of field engineers for predicting the geotechnical properties.


2021 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Mazhar Hussain ◽  
Daniel Levacher ◽  
Léo Saouti ◽  
Nathalie Leblanc ◽  
Hafida Zmamou ◽  
...  

Earth bricks are a traditional eco-friendly construction material. In this study, harbor-dredged sediments were used along with hemp shiv to develop a brick manufacturing procedure and compaction techniques to produce durable earth bricks for the valorization of waste hemp shiv and dredged sediments. Prismatic specimens of size 4 × 4 × 16 cm3 were manufactured with Dunkirk sediments after analyzing their suitability for earth bricks according to the French standard for flexural strength test to observe the indirect tensile strength and impact of the compaction techniques on the strength of bricks. Crude bricks were manufactured with varying hemp shiv content from 0% to 5% by mass. Compaction techniques such as dynamic compaction, static compaction, and tamping were applied. The effect of hemp shiv content and compaction techniques was evaluated with a flexural strength test and the distribution of fibers in bricks. Grain size analysis of sediments with French and Spanish standards shows that the sediments granulometry is suitable for earth bricks. The flexural strength testing of bricks indicates that bricks with saturated hemp shiv have higher flexural strength. Earth bricks have maximum strength with dynamic compaction with 1% hemp shiv, which satisfies the adobe bricks tensile strength requirements that vary from 0.012 to 0.025 MPa (NZS 4298, 1998; NORMA E.080 (2017).


2014 ◽  
Vol 4 (2) ◽  
pp. 618-624 ◽  
Author(s):  
H. Sellaf ◽  
H. Trouzine ◽  
M. Hamhami ◽  
A. Asroun

An experimental work was undertaken to study the effect of rubber tires on the geotechnical properties of a dredged sediment, using a mixing ratio of large size. For comparison, two types of soil were studied (dredged sediment from Fergoug dam and Tizi Tuff from the north west of Algeria). Taking into account the high compressibility and the low water absorption of the rubber tires, grain size analysis, density, Atterberg limits analysis, chemical composition, direct shear tests, loading-unloading tests, modified Proctor and CBR tests are performed on the two soils and their mixtures with different scrap tire rubber (10, 20, 25 and 50%). The results show that liquid limits and plastic indexes decrease with the scrap tire rubber content and that the decrease is more significant for soil with high plasticity. Cohesion also decreases with scrap tire rubber content when the internal friction angle is vacillating. Compression and recompression indexes increase gradually with the scrap tire rubber content and the variation for compression index is more significant for the two soils. Compaction characteristics and CBR values decrease with scrap tire rubber content. The CBR values for W=3% are important compared to those with W=5% excepted for mixture with (75% tuff and 25% scrap tire rubber). The results show that the scrap tire rubber can be used as a reinforcement material for dredged soil, but with a content that should not highly affect the compressibility.


2015 ◽  
Vol 754-755 ◽  
pp. 463-467
Author(s):  
Zuhayr Md Ghazaly ◽  
Mustaqqim Abdul Rahim ◽  
Nur Fitriah Isa ◽  
Liyana Ahmad Sofri ◽  
Muhammad Azizi Azizan ◽  
...  

Slope stability is very important on designing a safe slope. If this were to be taken lightly by the engineer, major disaster will occur that results in lost of lives. Each engineer is responsible to evaluate all aspects of design, especially when designing a slope gradient on the surface of soft clay. Soft clay containing high water content and if not planned properly, water from the soft clay will seep into the slope and causes reduction in soil strength. The purpose of this research was to investigate the effect of water absorption of soft clay on the stability of the slope. The objectives of this study were to analyze the soil strength when the soil were soaked in water to a set of different time range and to analyze slope stability on soft clay based on the infiltration of water from underground using PLAXIS software. In this study, soil samples were taken and laboratory experiments were carried out to obtain the unit weight, cohesion, and friction angle of the soil samples. The experiments involved were grain size analysis test and unconfined compression test. Data from the experiments will be used in PLAXIS software to obtain the factor of safety.


2019 ◽  
Vol 24 (5) ◽  
pp. 38
Author(s):  
Salih Rakan Shalal ◽  
Mohammed Rashid Abood ◽  
Amera Ismail Hussain

Four sites with different depth in AL-Fursan area/ North Tikrit city were selected for recent deposits sampling. The geotechnical properties of soil were tested and improvement of engineering properties of soil by cement was carried out. The geotechnical properties  test results revealed that the moisture content ranges between (0.53 -1.45)% which is low because of  sampling in summer season, while the grain size analysis show that the soil at the study area is coarse soil (sand) with fines. The soil type in the first site is clayey sand (SC), the second site contains sand with equal percentage of silt and clay (SC- SM) , the third and fourth site types are silty sand (SM). The specific gravity ranges between (2.46- 2.72) sites (1,2,3) are low liquid limit and low swelling index but the fourth site is moderate. The value of cohesion strength for the four sites are (16, 13, 1, 8)kPa respectively, sites (1) and (2)  are moderate cohesion while sites (3) and (4) are non-cohesion, none plastic and un active. The low values of cohesion strength belongs to high percentage of coarse particles in the area. The values of internal friction angles ranges between (300- 370). The consolidation test results revealed  that all sites were moderate compressive index except the first site which is low compressive and low swelling. The study area soil are neutral and high content of gypsum and soluble Dissolved salts and also high organic content. The soil improvement by cement tests results show increasing of cohesion and internal friction angle and the compaction test results show the samples are well sorted.   http://dx.doi.org/10.25130/tjps.24.2019.087


Overburden is the unutilized rock or soil bands that are generated during the mining process and are dumped near the marked placed inside the mine boundaries. It contains alluvial, sandstone, soil, gravel, clay, debris other than mining material. Dumping or management of this mine waste is a significant environmental problem, and additional cost spends to the mining industry. And also, most of this waste is disposed of at the surface, which inevitably requires extensive planning. Sand and gravel are low energy-intensive construction materials, but the growing demand for industrial uses has depleted this natural source. Limitations to natural sand extraction and legal regulations have been imposed in several countries due to environmental concerns. Due to the above, all the reasons river sand has become very costly in recent years. The research has been carried out to convert the overburden to processed overburden sand after that compared the geotechnical properties like specific gravity, permeability, moisture content, and grain size analysis, swell factor of both the overburden processed sand and natural river sand. Then we check the suitability of processed overburden material as a replacement to natural river sand in construction by comparing the strengths of the concrete samples prepared with both the river sand and processed overburden sand. We found the average compressive strength of overburden sand brick is 24.69 MPa, and river sand brick is 28.08 MPa of 14 days curing of bricks. The results obtained that the processed overburden sand can be used as the best alternative for the river sand because the geotechnical properties of both are almost the same. This processed overburden utilization in the coal mining area to reduced environmental impact, more availability of a land resource, minimizing the overburden disposable cost to the mining industry, and it’s also helpful to the preservation of natural river sand.


2018 ◽  
Vol 1 (March 2018) ◽  
Author(s):  
J.R Oluremi ◽  
K.O Fagbenro ◽  
O.M Osuolale ◽  
A.M Olawale

Lateritic soil is one of the major construction materials in road pavement. However, obtaining lateritic soil with sufficient strength is difficult, which may necessitate its improvement by stabilization. Lateritic soil, in this study, was stabilized with upto 12% Maize Husk Ash (MHA) by weight of soil samples, with a view of improving its geotechnical properties and assessing it as subbase materials. Classification tests (particle size analysis, specific gravity, Atterbergs limits) and strength index tests (compaction, california bearing ratio (CBR), unconfined compression test (UCS) were performed on both the natural and the MHA-stabilized soil samples. The grain size analysis shows that the percentage passing No. 200 BS sieve was 47.7% for the natural lateritic soil and between 50 and 62.1% for MHA stabilized lateritic soil. The liquid limit, plastic limit and plasticity index are in the range of 61 to 76%, 28 to 53% and 16 to 37% respectively. Also, the maximum dry densities increased, while the optimum water content decreased with increase in the MHA content. The CBR value of the lateritic soil increased with MHA content up till 6% addition of MHA and thereafter decreased, while higher UCS value was obtained up till 3% and then decreased with increasing content of MHA. The results indicated that the MHA stabilized lateritic soil could only be used as subgrade and fill materials.


Sign in / Sign up

Export Citation Format

Share Document