scholarly journals Implementation on a Preparation and Controlled Compaction Procedure for Waste-Fiber-Reinforced Raw Earth Samples

2021 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Mazhar Hussain ◽  
Daniel Levacher ◽  
Léo Saouti ◽  
Nathalie Leblanc ◽  
Hafida Zmamou ◽  
...  

Earth bricks are a traditional eco-friendly construction material. In this study, harbor-dredged sediments were used along with hemp shiv to develop a brick manufacturing procedure and compaction techniques to produce durable earth bricks for the valorization of waste hemp shiv and dredged sediments. Prismatic specimens of size 4 × 4 × 16 cm3 were manufactured with Dunkirk sediments after analyzing their suitability for earth bricks according to the French standard for flexural strength test to observe the indirect tensile strength and impact of the compaction techniques on the strength of bricks. Crude bricks were manufactured with varying hemp shiv content from 0% to 5% by mass. Compaction techniques such as dynamic compaction, static compaction, and tamping were applied. The effect of hemp shiv content and compaction techniques was evaluated with a flexural strength test and the distribution of fibers in bricks. Grain size analysis of sediments with French and Spanish standards shows that the sediments granulometry is suitable for earth bricks. The flexural strength testing of bricks indicates that bricks with saturated hemp shiv have higher flexural strength. Earth bricks have maximum strength with dynamic compaction with 1% hemp shiv, which satisfies the adobe bricks tensile strength requirements that vary from 0.012 to 0.025 MPa (NZS 4298, 1998; NORMA E.080 (2017).

2013 ◽  
Vol 24 (6) ◽  
pp. 630-634 ◽  
Author(s):  
Juliana Abdallah Atoui ◽  
Daniela Nair Borges Felipucci ◽  
Valeria Oliveira Pagnano ◽  
Iara Augusta Orsi ◽  
Mauro Antonio de Arruda Nobilo ◽  
...  

This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84±19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90±37.76; laser=515.85±62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.


2020 ◽  
Vol 11 (2) ◽  
pp. 221-246
Author(s):  
Ghasem Pachideh ◽  
Majid Gholhaki

Purpose With respect to the studies conducted so far and lack of researches on the post-heat behavior of cement mortars containing pozzolanic materials, the purpose of this paper is to investigate the post-heat mechanical characteristics (i.e. compressive, tensile and flexural strength) of cement mortars containing granulated blast-furnace slag (GBFS) and silica fume (SF). In doing so, selected temperatures include 25, 100, 250, 500, 700 and 9000c. Last, the X-ray diffraction test was conducted to study the microstructure of mixtures and subsequently, the results were presented as power-one mathematical relations. Design/methodology/approach Totally, 378 specimens were built to conduct flexural, compressive and tensile strength tests. Accordingly, these specimens include cubic and prismatic specimens with dimensions of 5 × 5 × 5 cm and 16 × 4 × 4 cm, respectively, to conduct compressive and flexural strength tests together with briquette specimen used for tensile strength test in which cement was replaced by 7, 14 and 21 per cent of SF and GBFS. To study the effect of temperature, the specimens were heated. In this respect, they were heated with a rate of 5°C/min and exposed to temperatures of 25 (ordinary temperature), 100, 250, 500, 700 and 900°C. Findings On the basis of the results, the most profound effect of using GBFS and SF, respectively, takes place in low (up to 250°C) and high (500°C and greater degrees) temperatures. Quantitatively, the compressive, tensile and flexural strengths were enhanced by 73 and 180 per cent, 45 and 100 per cent, 106 and 112 per cent, respectively, in low and high temperatures. In addition, as the temperature elevates, the particles of specimens containing SF and GBFS shrink less in size compared to the reference specimen. Originality/value The specimens were cured according to ASTMC192 after 28 days placement in the water basin. First, in compliance with what has been specified by the mix design, the mortar, including pozzolanic materials and superplasticizer, was prepared and then, the sampling procedure was conducted on cubic specimens with dimension of 5 × 5 × 5 mm for compressive strength test, prismatic specimens with dimensions of 16 × 4 × 4 mm for flexural strength test and last, briquette specimens were provided to conduct tensile strength tests (for each temperature and every test, three specimens were built).


2019 ◽  
Vol 2 (2) ◽  
pp. 299
Author(s):  
Angga Dwi Cahya ◽  
Yosef Cahyo Setianto Poernomo ◽  
Ahmad Ridwan

We all know that steel elements cannot be renewed and their constituent elements take a long time to form. So there is a need for other alternatives which have steellike properties. One alternative is bamboo, bamboo is one material that can be used as a substitute for steel, because bamboo has a high tensile strength close to the strength of steel. In this study an attempt was made to compare the use of reinforcement with bamboo on the outside with the skin and the inside without skin to determine the flexural strength. The flexural strength test results on variations of skin obtained the value of Max P: average: 3400 kg with an average deflection of 9.25 mm while in variations without the skin P Max produced an average of 2400 kg with deflection value of 1.92 mm. Kita ketahui bersama bahawa unsur baja tidak bisa diperbaharui serta unsur penyusunnya yang membutuhkan waktu yang lama untuk terbentuk. Sehingga  perlu adanya alternatif  lain yang dimana memiliki sifat menyerupai baja. Salah satu alternatifnya adalah bambu, bambu merupakan salah satu bahan dapat digunakan sebagai pengganti baja, karena  bambu mempunyai kuat tarik yang tinggi yang mendekati kekuatan baja. Pada penelitian ini dicoba untuk membandingkan penggunaan tulangan dengan bambu bagian luar dengan kulit dan bagian dalam tanpa kulit guna mengetahui kekuatan lentur. Hasil pengujian kuat  lentur pada variasi kulit didapatkan nilai P Maks: rata-rata:3400 kg dengan  lendutan  rata-rata 9.25 mm sedangkan pada variasi tanpa kulit P Maks rata-rata yang dihasilkan 2400 kg dengan nilai lendutan 1.92 mm.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Sarito Sarito ◽  
Muhtarom Riyadi ◽  
Handi Sudardja

ABSTRACTMechanic characteristics of hard mortar are: compressive strength, flexural strength, tensile strength, and adhesion power. In the meantime, at Building Material Laboratory of Civil Engineering, State Polytechnic of Jakarta, test of tensile strength and adhesion power of mortar cannot be conducted because of the absence of the test equipment.This research aims to provide electric motor-powered equipment for tensile strength test of mortar in order to complete the equipment at Building Material Laboratory of Civil Engineering, State Polytechnic of Jakarta. The particular aim of the research is to make prototype of mortar tensile strength test equipment.In this research a prototype of motor-powered mortar tensile strength test equipment and the specimens, to test the performance of the equipment, were prepared. By examining the obstacles and shortcomings, this equipment is a development of the previous research by Muhtarom Riyadi and the team, 2015. The specimens, as the sample to test the equipment, were prepared by the ratio of one part of cement and three part of fine aggregate, with the total number of the specimens of 50 pieces.By analyzing the result of observation in trial period, the equipment could function as it should be. The magnitude of maximum tensile strength that causes the mortar specimens to break depends on the quality, age, and tensile area of mortar, which magnitude can be observed in manometer or scale with the unit of kilogram.Keywords: equipment, tensile, mortar, electric motorABSTRAKSifat mekanis mortar keras antara lain kuat tekan, kuat lentur, kuat tarik dan daya lekat. Sementara ini di Laboratorium bahan bangunan Jurusan Teknik Sipil Politeknik Negeri Jakarta untuk uji kuat tarik dan daya lekat mortar belum bisa dilaksanakan karena belum adanya peralatan untuk melakukan pengujian.Penelitian ini bertujuan untuk membuat alat uji tarik mortar menggunakan tenaga penggerak motor listrik guna melengkapi peralatan yang diperlukan di Laboratorium bahan bangunan Jurusan Teknik Sipil Politeknik Negeri Jakarta. Target khusus yang ingin dicapai adalah membuat prototype alat uji tarik mortar.Dalam penelitian ini akan dibuat prototipe alat uji tarik mortar menggunakan tenaga motor listrik dan cetakan benda ujinya, sekaligus untuk menguji kinerjanya. Alat ini merupakan pengembangan oleh peneliti yang terdahulu Muhtarom Riyadi dan anggotanya, 2015), dengan mencermati kendala dan kekurangannya maka penelitian ini merupakan penyempurnaan penelitian sebelumnya Sebagai sampelnya dibuat benda uji tarik mortar dengan perbandingan 1 bagian semen berbanding 3 bagian pasir, sedangkan jumlah benda uji dibuat sebanyak 50 buah.Hasil pengamatan selama uji coba maka alat alat uji tarik mortar menggunakan tenaga penggerak motor listrik dapat berfungsi sebagaimana mestinya. Besarnya gaya tarik maksimum yang menjadikan benda uji tarik mortar putus tergantung dari mutu mortar, umur serta luas penampang tarik yang nilainya dapat diamatai pada manometer atau timbangan berat dengan satuan kilogramKata kunci : Alat, uji, tarik, mortar, motor listrik


1983 ◽  
Vol 4 ◽  
pp. 305
Author(s):  
E. M. Schulson ◽  
J. H. Currier

Structure/property relationships, while well-researched in metallic and in some ceramic materials, have been essentially ignored 1n studies on the mechanical properties of ice. To rectify this situation, experiments have been designed and have been underway for the past two years to investigate one mechanical property, i.e. tensile strength, and the effect of one structural feature, i.e. grain size, on this property. A clear relationship has been established, and is reported here. Other work is in progress and will also be reported in due course. Equiaxed and randomly oriented aggregates of freshwater ice, of grain size (as seen in two-dimensional sections) varying from 1.0 to 7.3 mm, were prepared in the form of large cylinders (91 mm diameter × 231 mm length). The aggregates were deformed to fracture under uniaxial tension, using a specially designed ball-joint and yoke assembly to ensure axial loading. Data were obtained at -10 ±0.2°C (i.e. at 96% of the melting point) at a strain-rate of 10−6 s−1. Figure 1 shows that the tensile strength decreases with increasing grain size, from 1.25 MPa for d = 1 mm to 0.80 MPa for d = 7 mm. Moreover, this figure illustrates that the data are highly reproducible; i.e. that strength is reproducible to within ±5% for a given grain size over the complete range. Fig. 1. Graph showing the decrease in the tensile strength of ice with increasing grain size. Concerning the functional relationship between tensile strength of and grain size, analysis shows that the following equation is well obeyed: Where σj is 0.6 MPa and k is 0.02 MPa m½ at -10°C and 10−6 s−1. This point is illustrated in Figure 2. Fig. 2. Hall-Petch plot showing the relationship between the tensile strength and the grain size of the ice. The d−½ character of this relationship, which is of the classical Hall-Petch form observed frequently in metallic materials, indicates that the tensile strength of ice is controlled by some process involving stress concentration, possibly the propagation of microcracks nucleated by the interactions of dislocations or the propagation of pre-existing defects. Of these, the former is the more probable. The reason is that processes involving dislocation motion, when expressed by the difference of σf – σi, are expected to increase linearly with increasing d−½, whereas processes involving the propagation of pre-existing defects predict a linear relationship between σf and d−½ which extrapolates through the origin. The former behavior is the one observed. It is thus concluded: (i) that the tensile strength of equiaxed and randomly oriented freshwater ice, when deformed slowly at -10°C, decreases with increasing grain size, (ii) that the functional relationship between tensile strength σf and grain size d is σf = σj + kd−½, where σj and k are materials parameters, and (iii) that the tensile strength of polycrystalline ice is controlled by the propagation in a brittle manner of microcracks nucleated by dislocation interactions. Acknowledgement This work was funded by the US Army Research Office, Contract No. DAA G-29-80-C-0064.


Author(s):  
S. B. Kandekar ◽  
◽  
S. K. Wakchaure ◽  

Materials are the most important component of building construction. The demands of construction material are increasing day by day significantly. This demand is increasing the material prices and scarcity of material in construction industry. To achieve economical and eco-friendly criteria naturally occurring material is selected. Clay is a natural material and it can be available easily. This paper interprets the experimental investigation on strength of concrete using clay as a partial replacement to binder content (cement) in concrete. The replacement percentages are grouped as 0%, 10%, 20%, 30%, 40% of clay and 5% of hydrated lime with cement in each series in M25 grade of concrete. To achieve the pozzolanic property of clay hydrated lime was added. Different tests are performed to determine the optimum percentage of clay as a replacement for binder content (cement) in concrete. The Compressive strength test, split tensile strength test and flexural strength test were performed on the specimens. Total 90 cubes of size 150 mm were prepared for compressive strength test, 30 cylinders of 150 mm diameter and 300 mm height were prepared for split tensile strength test and 30 beams of size 150 mm x 150 mm x 1000 mm were prepared to carry out the flexural strength test. The results are compared to find the ideal proportion of clay as a replacement for cement. It is found that 10% replacement with 5% hydrated lime gives satisfactory results.


Author(s):  
C. Mounika

Abstract: The main aim of this project is to evaluate mechanical properties of interlocking bricks using coir fiber powder as a substitute of cement and rubber tire waste as a substitute of fine aggregate (sand) with varying percentages of 0%, 1%, 2% & 3% and 0%, 5%, 10% & 15% in concrete and to help in solving environmental problem produced from disposing of waste tires and coir husk partially. Additionally fly ash was also added with varying percentages of 5%, 10% and 15% as a substitute to cement in a concrete mix. Several laboratory tests such as compressive strength test, flexural strength test, split tensile strength test, water absorption test and density of concrete etc., were conducted on hardened concrete specimen to achieve the optimum usage of crumb rubber tire waste and coir fiber powder in mix proportion of concrete. It is found that the maximum compressive strength value of coir fiber based crumb rubber interlocking brick was obtained at 1%CF + 5%FA + 5%CR, flexural strength value and split tensile strength value of coir fiber based crumb rubber concrete block was obtained at 1%CF + 5%FA + 5%CR. From the final conclusion or outcome of the project, optimum usage of coir fiber powder is 3% and crumb rubber is 5%. Keywords: coir fiber powder, crumb rubber tire waste, mechanical properties, interlocking bricks & optimum usage.


This paper portrays an experimental research conducted to determine the strength and flexural behavior of the polypropylene fiber reinforced beams. Polypropylene fibers were being added in concrete with different dosages viz., 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% to the total volume of concrete and Ordinary Portland Cement (OPC) and Portland Slag Cements (PSC) were added in the ratio of 60:40 with the overall cement content. Cubes were cast for compressive strength test and cylinder were cast for tensile strength test and beams were cast for flexural strength test. Seven beams were tested; one normal beam without polypropylene fiber and six beams with polypropylene fiber were cast and flexural strength test was conducted. Polypropylene fiber and slag cements were used in mass concrete structures to reduce heat of hydration and shrinkage cracks. Flexural strength and the cracking pattern were monitored during the test. The results indicated that the addition of polypropylene fibers and slag cements in concrete significantly increased the compressive strength, tensile strength, flexural strength and load carrying capacity of beams with different cracking patterns


Author(s):  
Hammed A. Olayiwola ◽  
K. A. Apanpa ◽  
Anjorin, Ademola

This study investigates variation of termite mounds in relation to the control soils around our environment that are not hindered by the termites at various locations at The Polytechnic; Ibadan, Oyo State, southwest Nigeria. From the study area, five termitaria were selected at random. At the core of termitaria, soil samples were taken at a distance of 7.5m and 15m to the both side of termitaria. Twenty five (25 soil samples were collected in all and were subjected to geotechnical properties such as natural moisture content, grain size analysis, california bearing ratio (CBR) test, Atterberg’s limits, and unconfined compressive strength test. The results proved that termite mound soil have better geotechnical properties compared to surrounding control soil. The betterment was attributed to the activities of termites in termitaria thus increasing the strength parameters present in the soil.


2021 ◽  
Vol 3 (3) ◽  
pp. 49-61
Author(s):  
Meisye Mitha Siranga ◽  
Suryanti Rapang Tonapa ◽  
Frans Phengkarsa

The use of concrete in Indonesia cannot be separated from skyscrapers, bridges with long spans, and underground buildings which generally have a larger load, so the use of high-strength concrete is necessary. This study aims to determine the value of compressive strength, split tensile strength, flexural strength, modulus of elasticity of concrete and determine the workability of fresh concrete with the addition of 0.8% superplaticizer. The test objects used in the form of cylinders with a diameter of 15 cm and a height of 30 cm as many as 15 pieces, and 3 pieces of blocks measuring 15 cm × 15 cm × 60 cm. From the results of the study, the compressive strength value was 43,007 MPa. The split tensile strength test is 3.584 MPa. The flexural strength test is 4,340 MPa. The elastic modulus test is 28447.956 MPa. From the slump test on fresh concrete with the addition of a superplaticizer, it is obtained by 10 cm.


Sign in / Sign up

Export Citation Format

Share Document