scholarly journals Recycling of Crop Residues for Sustainable Soil Health Management: A Review

Author(s):  
Sunil Kumar Dadhich ◽  
Govind Kumar Yadav ◽  
Kamlesh Yadav ◽  
Chiranjeev Kumawat ◽  
Mahesh Kumar Munalia

Burning of crop residues have become a challenging issue for scientist’s community as well as policy makers worldwide as it directly affects environment, soil health and the productivity of crops. Microbial mediated recycling of crop residues into an amorphous dark brown to black colloidal humus like substance under conditions of optimum temperature, moisture and aeration is need of the hour. Crop residue recycling increases sequestration of organic carbon in soil which ultimately leads to improve soil physical, chemical and biological health. Organic carbon acts as a reservoir for nutrients, needed in crop production. Crop residue management recycling is a cost-effective option for minimizing agriculture's input with maximizing output. Besides supplying nutrients to the current crop, their residual effects on succeeding crops in the system are also important. This review emphasizes on crop residue recycling by different techniques. This review paper maybe helpful to the policy makers and researchers.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4836 ◽  
Author(s):  
Marie-Pierre Hiel ◽  
Sophie Barbieux ◽  
Jérôme Pierreux ◽  
Claire Olivier ◽  
Guillaume Lobet ◽  
...  

Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops—winter wheat, faba bean and maize—cultivated over six cropping seasons), soil organic carbon content, nitrate (${\mathrm{NO}}_{3}^{-}$), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC) content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue management on the ${\mathrm{NO}}_{3}^{-}$ content, since the effect of fertilization dominated the effect of residue management. To confirm the results and enhance early tendencies, we believe that the experiment should be followed up in the future to observe whether more consistent changes in the whole agro-ecosystem functioning are present on the long term when managing residues with contrasted strategies.


2020 ◽  
Vol 12 (23) ◽  
pp. 9808
Author(s):  
Sukamal Sarkar ◽  
Milan Skalicky ◽  
Akbar Hossain ◽  
Marian Brestic ◽  
Saikat Saha ◽  
...  

Crop residues, the byproduct of crop production, are valuable natural resources that can be managed to maximize different input use efficiencies. Crop residue management is a well-known and widely accepted practice, and is a key component of conservation agriculture. The rapid shift from conventional agriculture to input-intensive modern agricultural practices often leads to an increase in the production of crop residues. Growing more food for an ever-increasing population brings the chance of fast residue generation. Ecosystem services from crop residues improve soil health status and supplement necessary elements in plants. However, this is just one side of the shield. Indecorous crop residue management, including in-situ residue burning, often causes serious environmental hazards. This happens to be one of the most serious environmental hazard issues witnessed by the agricultural sector. Moreover, improper management of these residues often restrains them from imparting their beneficial effects. In this paper, we have reviewed all recent findings to understand and summarize the different aspects of crop residue management, like the impact of the residues on crop and soil health, natural resource recycling, and strategies related to residue retention in farming systems, which are linked to the environment and ecology. This comprehensive review paper may be helpful for different stakeholders to formulate suitable residue management techniques that will fit well under existing farming system practices without compromising the systems’ productivity and environmental sustainability.


2019 ◽  
Vol 40 (03) ◽  
Author(s):  
Maninder Singh ◽  
Anita Jaswal ◽  
Arshdeep Singh

Crop residue management (CRM) through conservation agriculture can improve soil productivity and crop production by preserving soil organic matter (SOM) levels. Two major benefits of surface-residue management are improved organic matter (OM) near the soil surface and boosted nutrient cycling and preservation. Larger microbial biomass and activity near the soil surface act as a pool for nutrients desirable in crop production and enhance structural stability for increased infiltration. In addition to the altered nutrient distribution within the soil profile, changes also occur in the chemical and physical properties of the soil. Improved soil C sequestration through enhanced CRM is a cost-effective option for reducing agriculture's impact on the environment. Ideally, CRM practices should be selected to optimize crop yields with negligible adverse effects on the environment. Crop residues of common agricultural crops are chief resources, not only as sources of nutrients for subsequent crops but also for amended soil, water and air quality. Maintaining and managing crop residues in agriculture can be economically beneficial to many producers and more importantly to society. Improved residue management and reduced tillage practices should be encouraged because of their beneficial role in reducing soil degradation and increasing soil productivity. Thus, farmers have a responsibility in making management decisions that will enable them to optimize crop yields and minimize environmental impacts. Multi-disciplinary and integrated efforts by a wide variety of scientists are required to design the best site-specific systems for CRM practices to enhance agricultural productivity and sustainability while minimizing environmental impacts.


1999 ◽  
Vol 79 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Y. K. Soon

Cereal straw has many potential on-farm and off-farm uses. If straw is to be removed from land, the practice should not adversely impact long-term crop production and soil quality. A 10-yr experiment was conducted on a Dark Grey Solod near Beaverlodge, Alberta (55°13′N, 119°20′W) to determine the effects of fertilizer and straw management on the yield of, and nutrient (N and P) use by, continuous barley (Hordeum vulgare L.). Four straw management treatments: (i) straw removal; (ii) straw ploughed in; (iii) straw disked in; and (iv) straw disked in plus a red clover (Trifoleum pratense L.) green manure disked in every fifth year, were superimposed on four fertilizer treatments. The fertilizer treatments were application of N and P: (i) banded at soil-test recommended rates (ST,b); (ii) broadcast and incorporated at soil-test recommended rates (ST,bi); (iii) banded at soil-test rates of N+ 25 kg ha−1 and P+ 10 kg ha−1 (ST+,b); and (iv) as in (iii) but broadcast-applied and incorporated (ST+,bi). The straw ploughed-in treatment tended to produce lower annual barley yield and N uptake (by 9 and 13%, respectively) than the other three residue treatments. Barley yield and utilization of N and P were unaffected by straw removal as compared to disking-in straw. Barley yield and N uptake were higher (by 12 and 17%, respectively) with N and P application at the higher rate. At the recommended rate, broadcast-and-incorporated application of fertilizers resulted in lower yields and nutrient use than banded-in application. Treatment effects on P uptake tended to be small. The green-manured treatment used less fertilizer N, resulted in less total barley grain production, and did not increase the amount of crop residues incorporated. It is concluded that grain yield and nutrient (N and P) use of a continuous barley cropping system, fertilized at recommended rates of N and P, were unaffected by straw removal. Key words: Crop residue management, continuous barley production, fertilizer N and P


Soil Research ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1 ◽  
Author(s):  
Christopher Poeplau ◽  
Lisa Reiter ◽  
Antonio Berti ◽  
Thomas Kätterer

Crop residue incorporation (RI) is recommended to increase soil organic carbon (SOC) stocks. However, the positive effect on SOC is often reported to be relatively low and alternative use of crop residues, e.g. as a bioenergy source, may be more climate smart. In this context, it is important to understand: (i) the response of SOC stocks to long-term crop residue incorporation; and (ii) the qualitative SOC change, in order to judge the sustainability of this measure. We investigated the effect of 40 years of RI combined with five different nitrogen (N) fertilisation levels on SOC stocks and five SOC fractions differing in turnover times on a clay loam soil in Padua, Italy. The average increase in SOC stock in the 0–30cm soil layer was 3.1Mgha–1 or 6.8%, with no difference between N fertilisation rates. Retention coefficients of residues did not exceed 4% and decreased significantly with increasing N rate (R2=0.49). The effect of RI was higher after 20 years (4.6Mgha–1) than after 40 years, indicating that a new equilibrium has been reached and no further gains in SOC can be expected. Most (92%) of the total SOC was stored in the silt and clay fraction and 93% of the accumulated carbon was also found in this fraction, showing the importance of fine mineral particles for SOC storage, stabilisation and sequestration in arable soils. No change was detected in more labile fractions, indicating complete turnover of the annual residue-derived C in these fractions under a warm humid climate and in a highly base-saturated soil. The applied fractionation was thus useful to elucidate drivers and mechanisms of SOC formation and stabilisation. We conclude that residue incorporation is not a significant management practice affecting soil C storage in warm temperate climatic regions.


Author(s):  
Gopalakrishnan Srinivasan ◽  
Arumugam Abirami

The atmosphere of New Delhi during the months of October to the January next year (every year) remains critical due to factors such as stubble burning in the nearby state of Punjab, air pollution rising out of Diwali fireworks and the smog during December and January. Stubble burning is the intentional incineration of paddy / any other field stubbles by farmers after the harvest. It is usually done to eliminate pests such as rats, crickets and hoppers. The availability of short time between rice harvesting and sowing of wheat is the most important reason for burning of crop residues. Also yield and quality of wheat gets severely affected if there is delay in sowing. Since the time gap is very limited (about 3 – 4 weeks) between rice and wheat, burning of crop residues is preferred since it is the quickest and easiest solution for the farmers. According to reports, New Delhi, Noida and Ghaziabad recorded a peak Air Quality Index (AQI) of around 480 – 490 in the month of November 2019. Health effects of air pollution include respiratory diseases, skin and eye irritation and other ailments. An important factor is shortage of labor contributing to burning of rice straw. Apart from stubble burning, farmers burn wood for domestic cooking, removal of municipal solid wastes and accidental / intentional wildfires. Use of combined harvester – Happy Seeder machine is a profitable and less labour-intensive management of rice residue. Yet many farmers still have the perception that there are no alternative solutions for crop residue management. Besides Happy Seeder machine, there are other machines such as rotavator, reaper binder and no-till seed drill that can be alternatives for crop residue burning. In 2019 – 20, the Punjab government disbursed a certain amount to farmers for not burning stubble as compensation, yet many farmers adopted the stubble burning process. Other measures such as adoption of villages by Confederation of Indian Industries, MoU with institutes for wast


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 464 ◽  
Author(s):  
Santosh Shiwakoti ◽  
Valtcho D. Zheljazkov ◽  
Hero T. Gollany ◽  
Markus Kleber ◽  
Baoshan Xing ◽  
...  

Crop residues are an important source of plant nutrients. However, information on the various methods of residue management on micronutrients in soil and wheat (Triticum aestivum L.) over time is limited. A long-term (84-year) agroecosystem experiment was assessed to determine the impact of fertilizer type and methods of crop residue management on micronutrients over time under dryland winter wheat-fallow rotation. The treatments were: no N application with residue burning in fall (FB), spring (SB), and no residue burn (NB); 45 kg N ha−1 with SB and NB; 90 kg N ha−1 with SB and NB; pea vines; and farmyard manure (FYM) and a nearby undisturbed grass pasture (GP). Wheat grain, straw, and soil samples from 1995, 2005, and 2015 were used to determine tissue total and soil Mehlich III extractable Mn, Cu, B, Fe, and Zn, and soil pH. After 84 years, extractable Mn and B in the top 10 cm of soil decreased in all plots, except for B in FYM and SB. The FYM plots had the highest extractable Mn (114 mg kg−1) in the top 10 cm soil; however, it declined by 33% compared to the GP (171 mg kg−1). Extractable Zn in the top 10 cm of soil increased with FYM while it decreased with inorganic N application in 2015; however, total Zn in grain increased by 7% with inorganic N (90 kg ha−1) application compared to FYM application. The results suggest that residue management had similar impact on soil micronutrients. Inorganic N and FYM application can be integrated to reduce micronutrient losses from cultivation.


2019 ◽  
Vol 5 (04) ◽  
pp. 226-238
Author(s):  
Poonam C. Singh ◽  
Ashmita Tandon ◽  
Suchi Srivastava ◽  
Puneet S. Chauhan ◽  
Pankaj K. Srivastava ◽  
...  

Intensive cropping is a major cause of depleting soil organic carbon (SOC) eventually leading to soil infertility. Restoration of depleted SOC requires renewable sources of organic amendments. Crop residue (CR), mostly lost due to burning in many parts of the world, is a generously available renewable source of organic carbon (OC) that can be used for soil recarbonization. The study presents an overview of the OC losses and pollution due to residue burning in India and explores the perspective of using surplus CR to restore SOC and promote ecosystem services for sustainable agriculture. We reviewed and quantified the magnitude of CR generated, and its fertilization potential in the Indo-Gangetic Region (IGR), an intensively cultivated region of India where rice straw burning is prevalent. A novel concept of interconvertible carbon triangle (ΔICC) is proposed based on the three carbon pools, SOC from the soil, CO2,/CO from the atmosphere and organic carbon (OC) from plant biomass to assess the instability of an agricultural land and estimate the SOC requirements based on the crop production data. The study reviews the availability of OC and other nutrients in CR and professes the need of technologies to divert the surplus CR to improving soil fertility and mitigate environmental pollution due to agricultural burnings.


1998 ◽  
Vol 78 (4) ◽  
pp. 707-713 ◽  
Author(s):  
Y. K. Soon

A 10-yr experiment was initiated on a Dark Grey Solod near Beaverlodge, Alberta (55° 13′N, 119° 20′W) in 1985 to determine the effects of fertilizer management and barley (Hordeum vulgare L.) straw removal or incorporation on soil organic carbon (SOC) and related properties. Four crop residue treatments viz., (i) straw removed; (ii) straw ploughed in; (iii) straw disked in; (iv) straw disked in, plus a red clover (Trifolium pratense L.) green manure disked in every fifth year were superimposed on each of four fertilizer treatments. The fertilizer treatments were application of N and P: (i) banded at soil-test recommended rates (ST, b); (ii) broadcast-applied and incorporated at soil-test recommended rates (ST, bi); (iii) banded at soil-test rates of N + 25 kg ha−1 and of P + 10 kg ha−1 (ST +, b); (iv) as in (iii) but fertilizers broadcast-applied and incorporated (ST +, bi). Each treatment was replicated three times in a strip-plot design. Organic carbon, total nitrogen, total, organic and inorganic phosphorus, acid-hydrolysable carbohydrates, and microbial biomass C and N in the soil were not significantly influenced by crop residue treatments. The application of N and P fertilizers above soil-test recommended rates did not significantly affect any of the measured soil properties. Nitrogen application at the higher rate, irrespective of placement method, resulted in greater accumulation of nitrate, especially at 60–90 cm depth. It is concluded that barley straw removal over 10 yr from adequately fertilized continuous cropping systems in the Grey soil zone did not adversely affect SOC and some related nutrient pools and soil properties. Key words: Crop residue management, nitrogen, phosphorus, soil organic carbon, microbial biomass, soil carbohydrates


Sign in / Sign up

Export Citation Format

Share Document