scholarly journals The Effect of Plant Densities and Different Maturity Types on Maize Grain and Fodder Yield

Author(s):  
Boakye Boateng Augustine ◽  
Atta Boateng Bright

Three maturity types of maize, Abontem (extra early maturing), Omankwa (early maturing) and Obaatanpa (medium maturing) were evaluated at three different plant densities 66,667 plants ha-1, 100,001 plants ha-1 and 133,334 plants ha-1  to determine the optimum plant density for grain and fodder yield. The experiment was laid   in randomized complete block with four replicates factorial fashion. The maize maturity type had significant influence on all the traits measured. Plant density had significant effect on cob width, grain and fodder yield but no significant influence on plant height, days to 50% anthesis and silking, anthesis and silking interval, cob length and 1000 grain weight. Obaatanpa (medium maturing) was the maize maturity type that produced the highest grain yield (3139 kg ha-1) and fodder yield of (4173 kg ha-1).  Obaatanpa with 133,334 plants ha-1 interaction produced the highest grain and fodder yield with 3186 kg ha-1 and 4240 kg ha-1 respectively. Obaatanpa with 133,334 plants ha-1 would be recommended for commercial grain and fodder production because the high yielding potential as observed in the study.

2015 ◽  
Vol 154 (6) ◽  
pp. 978-988 ◽  
Author(s):  
P. YAN ◽  
Q. ZHANG ◽  
X. F. SHUAI ◽  
J. X. PAN ◽  
W. J. ZHANG ◽  
...  

SUMMARYUnderstanding the physiological mechanisms of biomass accumulation and partitioning in the grain, and the nitrogen (N) uptake associated with different plant densities and N management strategies, is essential for achieving both high yield and N use efficiency (NUE) in maize plants. A field experiment was conducted in 2013 and 2014, using five rates of N application and three plant densities (6·0, 7·5 and 9·0 plants/m2) in Quzhou County on the North China Plain (NCP). The objective was to evaluate whether higher plant density can produce more biomass allocated to the grain to achieve higher grain yield and to determine the optimal N management strategies for different plant densities. The highest grain yield and NUE were achieved in the 7·5 plants/m2 treatment; both the sub-optimal (6·0 plants/m2) and supra-optimal (9·0 plants/m2) plant densities resulted in diminished yield and NUE. Compared to 6·0 plants/m2, the 7·5 plants/m2 treatment displayed higher biomass accumulation during the grain-filling period and also exhibited more biomass allocated to kernels with similar total biomass accumulation compared with the 9·0 plants/m2 treatment, which contributed to its higher grain yield. The N uptake in the 7·5 plants/m2 treatment was similar to that in the 9·0 plants/m2 treatment up to pre-silking. However, the post-silking N uptake of the 7·5 plants/m2 treatment was 66·4 kg/ha, which was 29·1% higher than that of the 9·0 plants/m2 treatment. Furthermore, the highest maize grain yield was achieved in the 0·7 × optimal N rate (ONR × 0·7), ONR and ONR × 1·3 treatments for 6·0, 7·5 and 9·0 plants/m2, respectively, which suggests that different N management strategies are needed for different plant densities. In conclusion, selecting a planting density of 7·5 plants/m2 with an in-season root zone N management is a potentially effective strategy for achieving high grain yield and high NUE for maize production on the NCP.


2017 ◽  
Vol 30 (3) ◽  
pp. 670-678 ◽  
Author(s):  
ROGÉRIO PERES SORATTO ◽  
TIAGO ARANDA CATUCHI ◽  
EMERSON DE FREITAS CORDOVA DE SOUZA ◽  
JADER LUIS NANTES GARCIA

ABSTRACT The objective of this work was to evaluate the effect of plant densities and sidedressed nitrogen (N) rates on nutrition and productive performance of the common bean cultivars IPR 139 and Pérola. For each cultivar, a randomized complete block experimental design was used in a split-plot arrangement, with three replicates. Plots consisted of three plant densities (5, 7, and 9 plants ha-1) and subplots of five N rates (0, 30, 60, 120, and 180 kg ha-1). Aboveground dry matter, leaf macro- and micronutrient concentrations, yield components, grain yield, and protein concentration in grains were evaluated. Lower plant densities (5 and 7 plants m-1) increased aboveground dry matter production and the number of pods per plant and did not reduce grain yield. In the absence of N fertilization, reduction of plant density decreased N concentration in common bean leaves. Nitrogen fertilization linearly increased dry matter and leaf N concentration, mainly at lower plant densities. Regardless of plant density, the N supply linearly increased grain yield of cultivars IPR 139 and Pérola by 17.3 and 52.2%, respectively.


1981 ◽  
Vol 97 (1) ◽  
pp. 119-124 ◽  
Author(s):  
I. P. S. Ahlawat ◽  
C. S. Saraf

SUMMARYField studies were made for 2 years on a sandy loam soil under dryland conditions of north-west India with three pigeon-pea varieties in relation to plant density and the application of phosphate fertilizer. Varieties Pusa Ageti and P4785 with better developed root system and profuse nodulation had higher grain and stalk yield, and higher N and P yield than Prabhat. Root and shoot growth and root nodulation were adversely affected with increasing plant densities in the range 50 × 103 and 150 × 103 plants/ha. Stalk and total N and P yield increased with increasing plant density. Plant density of 117 × 103 plants/ha produced maximum grain yield of 1·53 t/ha. Phosphorus fertilizer promoted root and shoot growth, intensity and volume of nodulation and increased grain, stalk, N and P yield. The effect of plant density on grain yield was more pronounced in the presence of phosphate fertilizer. The economic optimum rate of P ranged between 22·1 and 23·1 kg/ha under different plant densities.


Author(s):  
Boakye Boateng, Augustine ◽  
Wilson, Godfre

A field experiment was conducted to examine the effect of plant spacing on grain and fodder yield of four cowpeas varieties. Four cowpea varieties i.e. Asetenapa, Asomdwe, Hewale and Videza were sown with three plant spacing i.e. 30 x 15 cm, 45 x 15 cm and 60 x 15 cm at Samboligo in the Bongo District of the Upper East of Ghana.  The experiment was laid in randomized complete block with four replicates in factorial fashion. Cowpea variety and plant spacing significantly influenced grain yield, 1000 seed weight, nodules per plant and plant height. Plant spacing had no significant effect on stem girth, pods per plant, pod length and seed per pods. Variety ‘Hewale’ produced the highest grain yield of 991.3 kg ha-1 while Asetenapa produced the highest fodder yield of 1025.5 kg ha-1. Interactive effect between Asomdwe and 45 x 15 cm had the highest 1000 seed weight (170.6 g) while Asetenapa and 30 x 15 cm produced the highest grain yield (1072.9 kg ha-1). Variety ‘Hewale’ is recommended for commercial grain production while Asetenapa for fodder production. Asetenapa and 30 x 15 cm combination is recommended for commercial grain production.


1978 ◽  
Vol 26 (4) ◽  
pp. 383-398 ◽  
Author(s):  
A. Darwinkel

The effect of plant density on the growth and productivity of the various ear-bearing stems of winter wheat was studied in detail to obtain information on the pattern of grain production of crops grown under field conditions. Strong compensation effects were measured: a 160-fold increase in plant density (5-800 plants/m2) finally resulted in a 3-fold increase in grain yield (282 to 850 g DM/m2). Max. grain yield was achieved at 100 plants/m2, which corresponded to 430 ears/m2 and to about 19 000 grains/m2. At higher plant densities more ears and more grains were produced, but grain yield remained constant. Tillering/plant was largely favoured by low plant densities because these allowed tiller formation to continue for a longer period and a greater proportion of tillers produced ears. However, at higher plant densities more tillers/unit area were formed and, despite a higher mortality, more ears were produced. The productivity of individual ears, from main stems as well as from tillers, decreased with increasing plant density and with later emergence of shoots. In the range from 5 to 800 plants/m2 grain yield/ear decreased from 2.40 to 1.14 g DM. At 800 plants/m2 nearly all ears originated from main stems, but with decreasing plant density tillers contributed increasingly to the number of ears. At 5 plants/m2, there were 23 ears/plant and grain yield/ear ranged from 4.20 (main stem) to 1.86 g DM (late-formed stems). Grain number/ear was reduced at higher densities and on younger stems, because there were fewer fertile spikelets and fewer grains in these spikelets. At the low density of 5 plants/m2, plants developed solitarily and grain yield/ear was determined by the number of grains/ear as well as by grain wt. Above 400 ears/m2, in this experiment reached at 100 plants/m2 and more, grain yield/ear depended solely on grain number, because the wt. of grains of the various stems were similar. The harvest index showed a max. of about 44% at a moderate plant density; at this density nearly max. grain yield was achieved. At low plant densities the harvest index decreased from 45% in main stems to about 36% in late-formed stems. However, no differences in harvest index existed between the various ear-bearing stems if the number of ears exceeded 400/m2. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1981 ◽  
Vol 61 (2) ◽  
pp. 265-273
Author(s):  
D. J. HUME ◽  
YILMA KEBEDE

Early-maturing grain sorghum (Sorghum bicolor (L.) Moench) hybrids which have potential usefulness in southern Ontario are commercially available. One such hybrid, Pride P130, and two experimental hybrids, Pride X4043 and Pride X3160, were grown at three planting dates and three plant densities in 1975 and 1976 at Elora, Ontario. There were several hybrid × planting date and hybrid × plant density interactions for the development and yield parameters measured. However, grain yields of all hybrids decreased by about 10% per week when plantings were delayed 2 or 4 wk after mid-May in 1975. In 1976, yields declined even more after late planting. Increasing populations from 75 000 to 300 000 plants/ha in 1975 increased grain yields from 4.3 to 6.0 t/ha, averaged over hybrids and planting dates. In 1976, raising populations from 150 000 to 450 000 plants/ha increased average yields from 3.2 to 3.7 t/ha. P130 was the earliest and best-yielding hybrid in both years. In 1975, which had a warm May and near-average temperatures, the best treatment yielded 7.3 t grain/ha and hybrids at all planting dates matured. The best treatment approached grain corn (Zea mays L.) yields. In 1976 with a cool spring and late summer, the highest grain yield was 5.7 t/ha with early planting, but 11 June plantings did not mature. In south-central Ontario, sorghum grain yields appear less reliable than those of corn.


1990 ◽  
Vol 30 (2) ◽  
pp. 257 ◽  
Author(s):  
LJ Wade ◽  
ACL Douglas

The extent and significance of the maturity x density interaction in dryland grain sorghum, and its implications for yield stability, were examined for 3 hybrids over 6 locations. Site mean grain yield ranged from 0.44 to 4.96 t/ha. Early maturity was superior in environments truncated by water stress, while late maturity was superior in favourable environments. Mid-season maturity provided greater stability of grain yield. Maximum yield by each hybrid at each yield level did not differ significantly from yield at a density of 75 000 plants/ha. The highest grain yields should be obtained with plant densities of 50000-100000 plants/ha under rainfed conditions, where yield expectations range from 0 to 5.0 t/ha. The results demonstrate the stability of sorghum grain yield over a wide range of plant density and crop maturity. Regression analysis aided data presentation and interpretation.


1992 ◽  
Vol 119 (3) ◽  
pp. 297-301 ◽  
Author(s):  
S. K. Roy ◽  
P. K. Biswas

SUMMARYMaize was grown al the Regional Agricultural Research Station, Hathazari, Bangladesh during 1988/89 and 1989/90 to study fodder yield, cob growth and grain yield together with the contribution of pre-silking stem reserves to grain. Population densities were 33300, 44400 and 66600 plants/ha. Plants were either detopped after silking and pollen shedding, keeping 0, 2 or 3 leaves above the cob, or were left entire.The results showed that the maize crop could successfully be detopped for fodder with little or no adverse effect on grain yield. Fodder yield increased with increased plant density and among the detopping treatments the highest fodder yield was obtained when the plants were detopped just above the cob. Cob growth followed a sigmoid pattern and the highest dry weight per cob was obtained from the lowest plant density and from entire plants. The number of cobs/m2 increased with increased plant density but detopping treatments did not give any significant difference in relation to densities. The number of grains/cob was highest with 33300 plants/ha but, among the detopping treatments, plants detopped just above the cob had the lowest number of grains/cob in both years. Weight of 1000-grain decreased with increasing plant density but it was increased by detopping plants just above the cob during 1988/89, although it was decreased in 1989/90. The highest apparent translocation of pre-silking reserves was obtained using densities of 44400 plants/ha but detopping treatments did not show any consistent effect, although the highest apparent translocation (20%) and harvest index (58%) were obtained from plants detopped just above the cob.


2019 ◽  
Vol 50 (6) ◽  
Author(s):  
Al-Mohmadi & Al-Ani

A field experiment was condueted at the experimental Farm, College of Agriculture University of AL-Anbar in replace location (Abu-Gheaib) in spring season of 2017. While in Fall season it was applied at AL-saqluwiya-Anbar Province 10 km west north of Falluga city to study the effect of four levels of licorice extractor (Glycyrrhiza glabra L.) (0,2,4 and 6) g.L-1 water and three (53,333, 66,666 and 88,888 plant) plant.ha-1. On growth and grain yield of Sorghum cv. Rabih. The experiment was applied using R.C.B.D. arranged in split plots with three replications. levels of plant densities were used as main-plot, while licorice extractor were used as sub-plot. Foliar application of licorice extractor was applied during vegetative growth. The results showed that, high plant density (88888) plant.h-1 significantly increase plant height and leaf area index, while most of traits were not significantly influenced by plant density including grain yield. Results revealed that foliar application of licorice extractor with 2,4,6 g.L-1 of water significantly influenced grain yield in spring season compane with control treatment and it is amounted to (9.62, 9.55 and 9.78) t.h-1 respectively. There were significant interaction between Licorice extractor and plant density in spring and fall season in grain yield. The higher grain yield of 10.31 and 10.33 t.h-1 were obtained when sorghum plants were sowing at hight density and sprayed with Licorice extractor at level          4 g.L-1 respectively


2020 ◽  
Author(s):  
S. Rajkumara ◽  
Vinita Vinita ◽  
R. M. Kachapur ◽  
B. G. Shivakumar

The scope of increasing the cultivated area under forages is rather limited, because of mounting pressure on need for food and commercial crops, but there is a large demand for green and dry fodder from livestock industry. Hence, fodder production has to be increased per unit area per unit time. By practicing the de-topping in commercial grain maize we can increase the fodder production, quality and it also reduces the deficit of fodder to some extent. Reviews indicated that by de-topping of maize, there may be slight reduction in grain yield of maize but by doing it at right stage/time and at right plant height it gives highest net returns than no de-topped treatments. De-topping at 30 days after silking; removing the top 6 leaves or after physiological maturity; removing all the leaves above the cob or de-topping above 10th internode gives highest fodder yield and net returns with slight or no reduction in grain yield.


Sign in / Sign up

Export Citation Format

Share Document