scholarly journals The use of Crushed Waste Glass as a Partial Replacement of Fine Aggregates in Asphalt Concrete Mixtures (Glassphalt)

Author(s):  
Gbadamosi Aderemi Tobi ◽  
Ogunsuyi Raphael Abidemi ◽  
Ojo Meshach Felix

With the rapid economic growth and continuously increased consumption, a large amount of glass waste materials is generated; this study investigated the effect of crushed waste glass as filler and also as an aggregate in the asphalt binder course. It compares the glassphalt mix with the specification range at different percentages to meet specifications limit according to Nigeria roads and bridges reverse book of 1997 Waste glass are cleaned and crushed from the glass bottles and added to the asphalt as a filler and as a replacement for coarse aggregates, the marshal method is used to determine the optimum bitumen content and evaluate the properties of the asphalt mix. However, 24 samples were prepared in total, 12 samples each for the asphalt mix used to determine the optimum bitumen content and the other 12 samples for the glassphalt mix used to find out the effect of adding the different percentages of crushed waste glass to the asphalt mixture. The Marshall test carried out on the asphalt mixtures showed that the optimum bitumen content of bitumen was found out to be 6.2% of the asphalt mix by weight. Also, Marshall Test carried out on the glassphalt mix showed the optimum percentage of glass used in the binder course of the weights of aggregates in the asphalt mix. The result of this experiment is been checked to be consistent with the Nigeria road and bridges reverse book of 1997, i.e. Marshall Stability, flow, bulk density, and air voids.

2016 ◽  
Vol 62 (2) ◽  
pp. 35-44 ◽  
Author(s):  
Y. Issa

Abstract The need to modify conventional pavement rises due to high maintenance cost of the highway systems. With the continuously increased consumption, a large amount of waste glass materials is generated annually in the world. This paper aims to study the performance of pavement asphalt in which a fractional aggregate is replaced with crushed glass. In this paper, some important properties of asphalt mix, including stability, flow, specific gravity and air voids are investigated. The original sample is prepared without adding glass for different percentages of bitumen. Other samples are prepared by adding crushed glass to the mix with 5%, 10%, and 15% by aggregate weight. The results show that the properties of glass-asphalt mixture are improved in comparison with normal asphalt pavement. It is concluded that the use of waste glass in asphalt pavement is desirable.


2019 ◽  
Vol 50 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Elżbieta Horszczaruk ◽  
Piotr Brzozowski

The utilization of solid waste materials or industrial waste as partial substitution of cement is growing in construction industry all around world. Less cement consumption causes consequently reduction in CO2 emission into the atmosphere and reduction in energy consumption. This paper examines the possibility of using finely ground waste glass as a partial replacement for cement and as a sealing admixture. Glass powder used in the research was prepared from the glass waste obtained from a local recycling company. Glass cullet made of brown glass, which after rinsing to remove sugars and other impurities, was dried and ground to a fraction below 125 μm.This paper is the revised version of the paper that has been published in the Proceedings of the Creative Construction Conference 2018 (Horszczaruk and Brzozowski, 2018).


2018 ◽  
Vol 1 (3) ◽  
pp. 715-724
Author(s):  
Razuardi Razuardi ◽  
Sofyan M. Saleh ◽  
Muhammad Isya

Abstract: The main cause of road damage is inseparable from stability and flexibility which is the determinant of the quality of pavement. One way to overcome that is to improve performance by modifying pavement mixture using additive, With low penetration value and high temperature in Indonesia, buton rock asphalt suitable for use as an additive. This research discusses the examination of mixtures whose performance has been optimized with buton rock asphalt modifications as filler. This study aims to determine the effect of minerals and bitumen contained in buton rock asphalt to marshall characteristics which are then compared with hot asphalt mixture using dust as filler. Variations of asphalt content used were 4.5%, 5%, 5.5%, 6% and 6.5% for both different filler types. In marshall test yield value of VIM, VMA, VFB, Stability, flow and marshall quentient, from the values obtained optimum bitumen content. Optimum asphalt content by using Buton rock asphat as filler of 5.87%. From marshall parameter result obtained the best stability value at 5% asphalt content of 1302,30 kg, density 2,41 gr / cm3, VIM 5,59%, VMA 17,42%, VFB equal to 67,96% and flow equal to 3 , 2 mm, and marshall quentient of 565,74 kg / mm, While the optimum asphalt content by using stone ash as filler is 5,51% yielding the best stability at 5,5% asphalt level 1767,02 kg, density 2,39 gr / cm3, VIM equal 3%, VMA equal to 16,21% , VFB of 81.99% and flow of 2.7 mm, and marshall quentient of 523.75 kg / mm.Abstrak: Penyebab utama dari kerusakan jalan raya tidak terlepas dari stabilitas dan fleksibilitas yang merupakan parameter penentu kualitas perkerasan jalan. Salah satu cara untuk mengatasinya yaitu dengan memperbaiki kinerja campuran dengan memodifikasi perkerasan menggunakan bahan tambah. Dengan nilai penetrasi yang rendah dan temperatur yang cukup tinggi di Indonesia, asbuton butir cocok di gunakan sebagai bahan tambah. Penelitian ini membahas tentang pemeriksaan campuran yang kinerjanya telah di optimumkan dengan penambahan buton rock asphalt (BRA) tipe 5/20 sebagai filler . Penelitian ini bertujuan untuk mengetahui pengaruh mineral dan bitumen yang terkadung didalam buton rock asphalt terhadap karakteristik marshall yang kemudian dibandingkan dengan campuran beraspal panas menggunakan abu batu sebagai filler. Variasi kadar aspal yang digunakan adalah 4,5%,5%,5,5%,6% dan 6,5% untuk kedua jenis filler yang berbeda. Pada uji marshall menghasilkan nilai VIM, VMA, VFB, Stabilitas, flow dan marshall quentient, dari nilai-nilai tersebut diperoleh kadar aspal optimum. Kadar aspal optimum dengan menggunakan Buton rock asphat sebagai filler sebesar 5,87 %. Dari hasil parameter marshall didapat nilai stabilitas terbaik pada kadar aspal 5% sebesar 1302,30 kg, density 2,41 gr/cm3, VIM sebesar 5,59%, VMA sebesar 17,42%, VFB sebesar 67,96% dan  flow sebesar 3,2 mm, dan marshall quentient sebesar 565,74 kg/mm, sedangkan kadar aspal optimum dengan menggunakan abu batu sebagai filler sebesar 5,51 % menghasilkan stabilitas terbaik pada kadar aspal 5,5 % sebesar 1767,02 kg, density 2,39 gr/cm3, VIM sebesar 3%, VMA sebesar 16,21%, VFB sebesar 81,99% dan  flow sebesar 2,7 mm, dan marshall quentient sebesar 523,75 kg/mm.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Moch Aminuddin ◽  
Sigit Winarto ◽  
Yosef Cahyo

ABSTRACT Asphalt Coating Concrete is one type of flexible pavement, the concrete asphalt consists of fine aggregates, coarse aggregates, fillers, and bitumen with a certain level mixed in hot conditions. In a mixture of laston filler serves as a cavity filler in the mixture, increases stability, and binders concrete asphalt. In this study, researchers used gypsum powder and red brick ash filler instead of cement.This research was conducted to find out how the effect of using gypsum and red brick ash powder as filler in the laston mixture (ac-bc) in terms of Marshall characteristics. Variations in the asphalt content used in the laston mixture in this study were 5%, 5.5%, 6%, 6.5%, and 7% in which each bitumen content was made as many as 3 samples.After doing the Marshall test, it is known that with volumetric and Marshall parameters using 3 samples of each bitumen content, the average results obtained in the calculation: VMA of 17.68%, VIM of 4.46%, VFB of 74.87%, Stability amounting to 1152 kg, Flow of 2.47 mm, and MQ of 472 kg / mm. And from the results of tests or testing of Marshall characteristics, the optimum bitumen content needed in the last-mix mixture of AC-BC using powdered gypsum and red brick ash filler was 6.5%. Keywords: Laston, filler, gypsum powder, red brick ash, Marshall characteristics


2020 ◽  
Vol 40 (2) ◽  
pp. 24-33
Author(s):  
Olumide Moses Ogundipe ◽  
Emeka Segun Nnochiri

The study investigates the use of waste glass as filler in asphalt concrete. Waste glass constitutes a significant proportion of the waste generated in both developed and developing countries. Successful utilization of the waste glass in asphalt will reduce the problem faced by environmental agencies at ensuring safe disposal of the non-biodegradable waste and may improve the asphalt properties. In the study, a waste glass in form of a filler was introduced into the asphalt mix at 8%, 10%, 12%, 14%, 16%, 18% and 20% of the total mix. The asphalt concrete samples with and without waste glass as filler were subjected to the Marshall test to determine the stability, flow, air voids, void in mix aggregate and void filled with bitumen. The Marshall test results show that stability increases when increasing glass filler up to 18%, although the values were lower than of the asphalt concrete without waste glass. This implies improved resistance to fatigue for higher waste glass content. Also, the flow increases with increasing glass filler, which implies the resistance to permanent deformation which did not improve. Generally, the introduction of waste glass in the asphalt concrete is environmentally friendly, and it will aid the sustainable management of waste glass.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2538 ◽  
Author(s):  
Seong Kim ◽  
Asad Hanif ◽  
Il Jang

This paper assesses the feasibility of using liquid crystal display (LCD) waste glass as a supplementary cementing material in cement mortars. Two different sizes of LCD waste glass powder (LGP) particles were used (5 µm and 12 µm) with two substitution levels with cement in mortar (10% and 20%). The resulting mortars were evaluated for strength, hydration, porosity and durability through various experimental techniques. It was found that LGP particles lead to appreciable strength gain at all ages in comparison with control mortar, especially significant strength gain of 18% was observed at 28-day. This is attributed to the greater gel-space ratio as corroborated by the experimental determination of porosity, which is found less for LGP-incorporated mortars as compared to control cement mortar. The smaller particle size of LGPs not only accelerates the pozzolanic reaction in alkaline cementitious matrix, but also fills the smaller pores, thus reducing porosity and contributing to strength gain. Increased hydration was also elucidated qualitatively by backscattered electron imaging. Due to the increased hydration in LGP-incorporated pastes and mortars, the durability (in terms of chloride ion permeability) has also been found improved. Thus, it is established that 10% (by weight) of cement can be replaced with 12 μm LGP, whereas 20% can be replaced with 5 μm LDP for improved strength and durability. Incorporating LCD waste in mortars and concretes as partial replacement of cement can not only help utilize this potentially hazardous waste, but also significantly reduce the associated carbon dioxide emissions, thus promoting sustainable development.


2020 ◽  
Author(s):  
Destaw Kifile ◽  
Emer Quezon ◽  
Abel Tesfaye

The use of waste recycled materials in road construction nowadays considered a positive means of providing improved pavement performance. This research focused on evaluating the effect of waste glass powder as a partial replacement of crushed stone dust filler in hot mix asphalt. Three hot mix asphalt samples produced using crushed stone dust of 5%, 6.5%, and 8% as mineral filler with five different bitumen content of 4%, 4.5%, 5%, 5.5%, and 6%, respectively. From the preliminary series tests of asphalt contents, a 6.5% crushed stone dust filler selected, providing the highest stability of waste glass powder. The content of crushed stone dust filler replaced with a rate of 0%, 25%, 50%, 75%, and 100% to test Marshal stability to obtain the Optimum bitumen content and Optimum filler content. Results indicated at 75% replacement of crushed stone dust with waste glass powder at 5.10% bitumen content, 12.0kN Marshall stability value, 2.84mm Flow value, 4.0% Air voids, 72.3% VFB, and 2.360g/cm3 Bulk density. Hence, the mixture of 75% waste glass powder by weight of crushed stone dust filler meets the minimum requirements of the Ethiopian Road Authority and Asphalt Institute Specifications.


2021 ◽  
Vol 2 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Bashir.A Almahdi ◽  
Abobaker G. F. Ahmeda ◽  
Ibrahim Adwan ◽  
Mohd Azizul Ladin

The feasibility of utilizing waste material for road construction is encouraging as it can decrease waste material harmful to the environment. Hence, a more sustainable method and a meticulous study of the available admixtures utilized to substitute standard asphalt binders with waste material must be conducted. However, there are several concerns and doubts about the real situation arising from the chemical and physical traits, as well as the mechanical performance issuing from the integration of waste material within the asphalt pavement to alleviate roads surface's permanent deformation. This investigation was carried out to study physical improvements made on ACW-14 bitumen by adding waste Polyethylene Terephthalate (PET) to serve as a partial replacement for bitumen content compared to normal, conventional 80/100 bitumen physical and rheological behavior. PET percentage added to the bitumen content was 10%, 8%, 6%, 4% and 2% of optimum bitumen content weight. The outcomes concluded that the best performance of bitumen on its density, VTM, VFB, flow, stability, and stiffness was achieved when 5.8% of Optimum Modified-Bitumen Content using PET. All the results obtained have been compared according to JKR Standards results, and the conclusion has fulfilled these requirements.


2021 ◽  
Vol 27 (10) ◽  
pp. 68-85
Author(s):  
Dhuha F. Abbas ◽  
Hasan Al Mosawe

  Asphalt Hot Mix (HMA) is mainly applied in highway construction in Iraq because of its economic advantage and easy maintenance. Various factors impact the performance of HMA in the field. It is one of the significant impacts on aggregate gradation. The Universal Specification for Roads and Bridges in Iraq (SCRB) limits the different types of asphalt layers and allows for designed tolerance aggregate gradation. It is quite hard for contractors in the present asphalt industries to achieve the required job mix because of sieves' control problems. This study focuses on the effects on the required specification performance of aggregate deviations by using original and modified asphalt binder with AC(40-50) and 4% SBS, respectively. A mid gradation of the base asphalt mixture was selected as a reference mix, and more than 24 deviated mixtures were then prepared. Typical Marshall routine studies on prepared compounds were performed to assess the properties of the mixture. Bailey's theory (CA, Fac ratios) was also employed for understanding the impact of these deviations on the arrangement of particles and blending performance. Results show that the mixture performance is not affected greatly by minor aggregate deviations. However, a significant deviation in coarse aggregates leads to a decrease in Marshall properties. Results showed that a good tool for understanding mixing performance is the Bailey performance assessment method. This paper aims to study the effects of using  4% Styrene Butadiene Styrene (SBS) and eliminating the effect of aggregate gradation deviations on the mixture performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Mahmoud Ameri ◽  
Mostafa Vamegh ◽  
Hamed Rooholamini ◽  
Farshad Haddadi

Rutting is one of the most common distresses in flexible pavements and can affect vehicle controlling features. Although asphalt binder constitutes a small percentage of the asphalt mixture, its properties play a crucial role in pavement performance and its rutting resistance. One way of improving binder properties and rutting resistance is to use additives. In this research, nanoclay and SBR polymer have been simultaneously used to modify 60–70 penetration binder to study rutting resistance of binder and asphalt mixture. To this end, the storage stability, rotational viscosity, DSR, and RCR tests on binder and marshal stability were performed, and dynamic creep and wheel track tests on asphalt mix were performed to assess rutting performance. The test and statistical analysis results indicated that nanoclay has considerably positive impact on rutting and elastic deformation of neat and SBR-modified asphalt binder and mixture.


Sign in / Sign up

Export Citation Format

Share Document