scholarly journals In vitro and In vivo Anticonvulsant Effect of Hydroalcoholic Extract of Moringa stenopetala in Mice Models

Author(s):  
Samson Sahile Salile ◽  
Teferra Abula

Background: Epilepsy is a debilitating neurological disorder that directly affects approximately 65 million people worldwide. In the search of safe and effective antiepileptics traditional treatment practices are one area of research to obtain novel molecules. Moringa stenopetala root is claimed to be used for epilepsy treatment in Konso area, Southern Ethiopia. But there was no scientific research evidence for the claimed use of the plant. Objective: This study was conducted to explore the anticonvulsant activity of hydro-alcoholic (80% methanol) extract of root of Moringa stenopetala. Methods: The dry residues of the plant extract was used for the test. In vitro 0Mg2+ mice model at dose 0.7 mg/kg of extract, diazepam(3μM) and untreated brain slice groups were used to compare the presence of seizure like event (SLE). In vivo pentylenetetrazol (PTZ) model with 85 mg/kg subcutaneously was used to compare the seizure on set time with two extract doses and diazepam 5 mg/kg. The data was presented with mean± standard error. In maximum electric shock (MES) model 54 mA was passed for 0.2 second transauricularly in mice. The mean time of hind limb extension was recorded for doses 400 mg/kg and 800mg/kg of the extract and 10 mg/kg phenytoin. The means were compared for statistical significance using one way ANOVA post hoc LSD whereas proportions were compared using Fishers exact test with P-value < .05. Results: M. stenopetala extract has shown statistically significant anticonvulsant activity in vitro compared to control (P<.05). A positive control, the known anticonvulsant diazepam (3μM), showed significant anticonvulsant activity (P<.05). In vivo MES model showed statistically significant anti-seizure activity at both doses (P<.05). But the crude extract failed to show statistically significant activity at all doses of PTZ model (P>.05). Conclusion: The results of this study showed that crude extract of Moringa stenopetala exhibited anti-convulsant effect both in vitro and in vivo MES models.

Author(s):  
Samson Sahile Salile ◽  
Teferra Abula

Background: Epilepsy is a chronic disorder of the brain that affects people of all ages worldwide. In the search of safe and effective antiepileptics traditional treatment practices are one area of research to obtain novel molecules. Research is also needed to validate and standardize the traditional claim. Clutia abyssinica leaves were one of the medicinal plants claimed for use against epilepsy and evil eye and other diseases in different parts of Ethiopia. But there was no scientific research evidence for the claimed use of the plant. Therefore this work was designed to evaluate the anticonvulsant effect of hydroalcoholic extract of Clutia abyssinica leaves. Methods: The dry residue of the plant extract was used for the test. In vitro 0Mg2+ mice model at dose 0.7 mg/kg of extract, diazepam (3μM) and untreated brain slice groups were used to compare the presence of seizure like event (SLE). In vivo pentylenetetrazol (PTZ) model with 85 mg/kg subcutaneously was used to compare the seizure onset time with two extract doses and diazepam 5 mg/kg. The data was presented with mean± standard error. In maximum electric shock (MES) model 54 mA was passed for 0.2 second transauricularly in mice. The mean time of hind limb extension was recorded for doses 400 mg/kg and 800mg/kg of the extract and 10 mg/kg phenytoin. The means were compared for statistical significance using one way ANOVA post hoc LSD whereas proportions were compared using Fishers exact test with P-value < .05.  Results: In vitro anticonvulsant tests C. abyssinica extract effect was not statistically significant compared to negative control (P>0.05).A positive control using the known anticonvulsant diazepam (3μM), showed significant anticonvulsant activity (P<0.05). The in vivo PTZ test showed no statistically significant effect in plant extract at all dose levels (P>0.05). In the in vivo MES test the extract of Clutia abyssinica both low and higher dose didn't show statistically significant effect (P>0.05) compared with the negative control. But the extract improved survival (p<0.05). The qualitative secondary metabolite test evidenced the presence of alkaloids, cardiac glycosides, flavanoids, phenols, saponins, sterols and terpeoids in Clutia abyssinica extract. Conclusion: The hydroalcoholic crude extract result of the C. abyssinica as anticonvulsant is weak based on the models used in this study. For most of the local preparation are mixes of different plants it may have synergistic action with other plants. Or it may have action with other models of chronic epilepsy.


2019 ◽  
Vol 47 (W1) ◽  
pp. W127-W135 ◽  
Author(s):  
Vincentius Martin ◽  
Jingkang Zhao ◽  
Ariel Afek ◽  
Zachery Mielko ◽  
Raluca Gordân

Abstract Non-coding genetic variants/mutations can play functional roles in the cell by disrupting regulatory interactions between transcription factors (TFs) and their genomic target sites. For most human TFs, a myriad of DNA-binding models are available and could be used to predict the effects of DNA mutations on TF binding. However, information on the quality of these models is scarce, making it hard to evaluate the statistical significance of predicted binding changes. Here, we present QBiC-Pred, a web server for predicting quantitative TF binding changes due to nucleotide variants. QBiC-Pred uses regression models of TF binding specificity trained on high-throughput in vitro data. The training is done using ordinary least squares (OLS), and we leverage distributional results associated with OLS estimation to compute, for each predicted change in TF binding, a P-value reflecting our confidence in the predicted effect. We show that OLS models are accurate in predicting the effects of mutations on TF binding in vitro and in vivo, outperforming widely-used PWM models as well as recently developed deep learning models of specificity. QBiC-Pred takes as input mutation datasets in several formats, and it allows post-processing of the results through a user-friendly web interface. QBiC-Pred is freely available at http://qbic.genome.duke.edu.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1159-1159 ◽  
Author(s):  
Corinne Summers ◽  
Alexandra Grier ◽  
Rebecca Gardner ◽  
Colleen Delaney ◽  
Michael C Jensen

Abstract Introduction: Relapse of CD19+ acute lymphoblastic leukemia (ALL) post-hematopoietic cell transplant (HCT) portends a dismal prognosis and opportunities to intensify the anti-tumor potency of HCT are limited by regimen related toxicities. While pre-transplant CD19 chimeric antigen receptor (CAR) T cell therapy can increase the numbers of patients who achieve minimal residual disease negative remissions, there remains an unmet need to further reduce the incidence of early post-HCT relapses through the use of adoptive immunotherapy. However, the use of CAR T cell therapies in this setting is severely limited as patients are on immunosuppressive therapy (IST) to prevent graft versus host disease (GVHD). Here, we report on a multiplexed engineering strategy to generate donor-derived CD19CAR T cells that are resistant to combinations of cyclosporine (CSA)/Tacrolimus (FK506) and/or mycophenolate mofetil (MMF), and devoid of GVHD reactivity for this patient population. Methods and Results: We developed CNA22 or CNA12-P2A-IMPDH2Δ-T2A-Her2tG vectors using the CNA22, CNA12 [Brewin M, et al, Blood 2009] and IMPDH2Δ [Jonnalagadda J, et al, PLoS One 2013] mutants conferring CSA, FK506 and MMF resistance, respectively. Her2tG is a truncated HER2 extracellular protein developed in our lab and used for selection and transduction efficiency determination using Herceptin. The drug resistant lentivirus packaged vector was used to co-transduce human T cells with our CD19CAR vector which includes a 4-1BB co-stimulatory domain and truncated EGFR protein (EGFRt) for cell selection, transduction efficiency and in vivo suicide using Erbitux [Wang, X, et al, Blood 2011]. We coupled dual transduction with mRNA TALEN transfection technology using a TALEN pair targeting the first exon of the TcRα constant region to transfect T cells for efficient knockout of the endogenous T cell receptor (TcR) thus eliminating the risk of causing GVHD. Our multiplexed technologies yield CD3/TcR knockouts rates greater than 80% with successful dual transduction of both vectors demonstrated by EGFRt and Her2tG expression (Figure A). Cells demonstrated MMF resistance in vitro as evidenced by increased Her2tG expression for culture purification following mycophenolic acid (MPA, active metabolite of MMF) exposure. In addition, prolonged MPA drug exposure at multiple drug concentrations (0-10uM) demonstrated improved culture expansion and viability for cultures containing cells transduced to express IMPDH2Δ over a 21 day culture period (Figure B). CD19CAR expressing cells demonstrated CD19 antigen targeted cell lysis as evaluated by chromium release assay. Furthermore, cytokine evaluations of cells following co-culturing with target cells at multiple CSA concentrations (0-1000ng/ml) yielded sustained IL-2, IFNg and TNFa secretion by CNA22 expressing cells following CD19CAR activation (Figure C). In vivo experiments are in progress to assess the functional attributes of these multiplexed engineered CAR T cells in relevant murine model systems. Conclusions: We successfully used multiplexed engineering strategies to generate CD3/TcR- CD19CAR+EGFRt+ CNA22-IMPDH2Δ-HER2tG+ T cells. Cells expressing CNA22 and IMPDH2Δ mutants exhibited activation and expansion in vitro in the presence of immunosuppressive agents CSA and MPA with targeted CD19CAR activity. These studies suggest the ability to generate modified T cells that remain functional in vivo even in the presence of IST and without induction of GVHD, allowing for this approach in the post-transplant setting to prevent/treat disease relapse. Figure A) Cells underwent successful dual transduction followed by mRNA TALEN transfection for development of CD3/TcR- CD19CAR+EGFRt+ CNA22-IMPDH2Δ-HER2tG+ T cells. B) Transduced T cells underwent selection for their respective markers, were stimulated and cultured for 21 days at varying MPA concentrations. Cells transduced to express IMPDH2Δ exhibited improved expansion as compared to CD19CAR and mock control cells. Data was normalized to the cell group's no drug control expansion. C) Following co-culture with K562-CD19 antigen cells with CSA concentrations of 0-1000ng/ml CD19CAR cells transduced with the drug resistant vector secreted significantly increased IFNg and IL-2 levels compared to CD19CAR only cells. NS = not significant; Horizontal bars indicate statistical significance defined as p-value <0.05. Figure. A) Cells underwent successful dual transduction followed by mRNA TALEN transfection for development of CD3/TcR- CD19CAR+EGFRt+ CNA22-IMPDH2Δ-HER2tG+ T cells. B) Transduced T cells underwent selection for their respective markers, were stimulated and cultured for 21 days at varying MPA concentrations. Cells transduced to express IMPDH2Δ exhibited improved expansion as compared to CD19CAR and mock control cells. Data was normalized to the cell group's no drug control expansion. C) Following co-culture with K562-CD19 antigen cells with CSA concentrations of 0-1000ng/ml CD19CAR cells transduced with the drug resistant vector secreted significantly increased IFNg and IL-2 levels compared to CD19CAR only cells. NS = not significant; Horizontal bars indicate statistical significance defined as p-value <0.05. Disclosures Jensen: Juno Therapeutics, Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding.


2021 ◽  
Vol 7 (6) ◽  
pp. 439
Author(s):  
Tecla Ciociola ◽  
Walter Magliani ◽  
Tiziano De Simone ◽  
Thelma A. Pertinhez ◽  
Stefania Conti ◽  
...  

It has been previously demonstrated that synthetic antibody-derived peptides could exert a significant activity in vitro, ex vivo, and/or in vivo against microorganisms and viruses, as well as immunomodulatory effects through the activation of immune cells. Based on the sequence of previously described antibody-derived peptides with recognized antifungal activity, an in silico analysis was conducted to identify novel antifungal candidates. The present study analyzed the candidacidal and structural properties of in silico designed peptides (ISDPs) derived by amino acid substitutions of the parent peptide KKVTMTCSAS. ISDPs proved to be more active in vitro than the parent peptide and all proved to be therapeutic in Galleria mellonella candidal infection, without showing toxic effects on mammalian cells. ISDPs were studied by circular dichroism spectroscopy, demonstrating different structural organization. These results allowed to validate a consensus sequence for the parent peptide KKVTMTCSAS that may be useful in the development of novel antimicrobial molecules.


2021 ◽  
Vol 22 (13) ◽  
pp. 6663
Author(s):  
Maurycy Jankowski ◽  
Mariusz Kaczmarek ◽  
Grzegorz Wąsiatycz ◽  
Claudia Dompe ◽  
Paul Mozdziak ◽  
...  

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3602
Author(s):  
Elena Genova ◽  
Maura Apollonio ◽  
Giuliana Decorti ◽  
Alessandra Tesser ◽  
Alberto Tommasini ◽  
...  

Interferonopathies are rare genetic conditions defined by systemic inflammatory episodes caused by innate immune system activation in the absence of pathogens. Currently, no targeted drugs are authorized for clinical use in these diseases. In this work, we studied the contribution of sulforaphane (SFN), a cruciferous-derived bioactive molecule, in the modulation of interferon-driven inflammation in an immortalized human hepatocytes (IHH) line and in two healthy volunteers, focusing on STING, a key-component player in interferon pathway, interferon signature modulation, and GSTM1 expression and genotype, which contributes to SFN metabolism and excretion. In vitro, SFN exposure reduced STING expression as well as interferon signature in the presence of the pro-inflammatory stimulus cGAMP (cGAMP 3 h vs. SFN+cGAMP 3 h p value < 0.0001; cGAMP 6 h vs. SFN+cGAMP 6 h p < 0.001, one way ANOVA), restoring STING expression to the level of unstimulated cells. In preliminary experiments on healthy volunteers, no appreciable variations in interferon signature were identified after SFN assumption, while only in one of them, presenting the GSTM1 wild type genotype related to reduced SFN excretion, could a downregulation of STING be recorded. This study confirmed that SFN inhibits STING-mediated inflammation and interferon-stimulated genes expression in vitro. However, only a trend towards the downregulation of STING could be reproduced in vivo. Results obtained have to be confirmed in a larger group of healthy individuals and in patients with type I interferonopathies to define if the assumption of SFN could be useful as supportive therapy.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


1996 ◽  
Vol 40 (11) ◽  
pp. 2567-2572 ◽  
Author(s):  
J R Sufrin ◽  
D Rattendi ◽  
A J Spiess ◽  
S Lane ◽  
C J Marasco ◽  
...  

Fifteen purine nucleosides and their O-acetylated ester derivatives were examined for in vitro antitrypanosomal activity against the LAB 110 EATRO isolate of Trypanosoma brucei brucei and two clinical isolates of Trypanosoma brucei rhodesiense. Initial comparisons of activity were made for the LAB 110 EATRO isolate. Three nucleoside analogs exhibited no significant activity (50% inhibitory concentrations [IC50s] of > 100 microM), whether they were O acetylated or unacetylated; three nucleosides showed almost equal activity (IC50s of < 5 microM) for the parent compound and the O-acetylated derivative; nine nucleosides showed significantly improved activity (> or = 3-fold) upon O acetylation; of these nine analogs, six displayed activity at least 10-fold greater than that of their parent nucleosides. The most significant results were those for four apparently inactive compounds which, upon O acetylation, displayed IC50s of < or = 25 microM. When the series of compounds was tested against T. brucei rhodesiense isolates (KETRI 243 and KETRI 269), their antitrypanosomal effects were comparable to those observed for the EATRO 110 strain. Thus, our studies of purine nucleosides have determined that O acetylation consistently improved their in vitro antitrypanosomal activity. This observed phenomenon was independent of their cellular enzyme targets (i.e., S-adenosylmethionine, polyamine, or purine salvage pathways). On the basis of our results, the routine preparation of O-acetylated purine nucleosides for in vitro screening of antitrypanosomal activity is recommended, since O acetylation transformed several inactive nucleosides into compounds with significant activity, presumably by improving uptake characteristics. O-acetylated purine nucleosides may offer in vivo therapeutic advantages compared with their parent nucleosides, and this possibility should be considered in future evaluations of this structural class of trypanocides.


2010 ◽  
Vol 128 (2) ◽  
pp. 533-536 ◽  
Author(s):  
Nibha Mishra ◽  
Awadesh Oraon ◽  
Abhimanyu Dev ◽  
Venkatesan Jayaprakash ◽  
Arijit Basu ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2223 ◽  
Author(s):  
Devis Bellucci ◽  
Valeria Cannillo ◽  
Alexandre Anesi ◽  
Roberta Salvatori ◽  
Luigi Chiarini ◽  
...  

In this work, a set of novel bioactive glasses have been tested in vivo in an animal model. The new compositions, characterized by an exceptional thermal stability and high in vitro bioactivity, contain strontium and/or magnesium, whose biological benefits are well documented in the literature. To simulate a long-term implant and to study the effect of the complete dissolution of glasses, samples were implanted in the mid-shaft of rabbits’ femur and analyzed 60 days after the surgery; such samples were in undersized powder form. The statistical significance with respect to the type of bioactive glass was analyzed by Kruskal–Wallis test. The results show high levels of bone remodeling, several new bone formations containing granules of calcium phosphate (sometimes with amounts of strontium and/or magnesium), and the absence of adverse effects on bone processes due to the almost complete glass dissolution. In vivo results confirming the cell culture outcomes of a previous study highlighted that these novel bioglasses had osteostimulative effect without adverse skeletal reaction, thus indicating possible beneficial effects on bone formation processes. The presence of strontium in the glasses seems to be particularly interesting.


Sign in / Sign up

Export Citation Format

Share Document