scholarly journals The Pharmaceutical Application of Sulfoxy Amine Chitosan in Design, Development and Evaluation of Transdermal Drug Delivery of Gliclazide

Author(s):  
Jadhav Rahul Laxman ◽  
Ahire Pallavi ◽  
Yadav Adhikrao Vyankatrao ◽  
Gharge G. Varsha ◽  
Patil Manisha Vyankatrao ◽  
...  

Objective: The aim & objectives of this research work was to explore applicability of our previously synthesized sulfoxy amine chitosan in design, development and evaluation of transdermal drug delivery of Gliclazide. Methods: To determine the interaction between excipients used and to find out the nature of drug in the formulation, Fourier transforms infra-red spectroscopy (FTIR) and Differential Scanning Colorimetry (DSC) studies were performed. Gliclazide containing transdermal patch were formulated with help of Sulfoxy Amine Chitosan, HPMC, Penetration enhancer Dimethyl Sulfoxide and Glycerine by using solvent casting method.9 formulations prepared by using 32 full factorial designs the effect of formulation variable was studied on % Moisture Content, Folding endurance, % Cumulative drug release at 12 hrs.Formulated transdermal patches were evaluated for various parameters. Results: FTIR & DSC suggest study no drug & polymers interaction .All the prepared transdermal patches were found to be faint yellow in colored, flexible, uniform, smooth, and transparent. The weight of the transdermal patches for different type of formulations ranged between 12.00 ± 0.6 mg & 14.2 ± 0.52 mg. The thickness of the patches varied from 0.171 ± 0.0035 mm to 0.182 ± 0.0026 mm. The moisture content & water vapour transmission rate in the patches ranged from 2.33 to 4.55% & from 0.002246 to 0.003597 mg.cm/cm2 24hrs.XRD diffractogram revealed  pure Gliclazide exhibited characteristic high-intensity diffraction peaks & optimized formulation showed  three peaks in 2θ= 20.6 28.7 and 38.95 with very weak intensities. Optimized batch F7 showed maximum drug release 98.41%. The folding endurance was lies in between 301 and 359. Optimization study was successfully conducted using 32 factorial designs. Conclusion: We concluded that transdermal patches Gliclazide of was successfully formulated with synthesized Sulfoxy Amine Chitosan & evaluated.

Author(s):  
P. Srikanth Reddy ◽  
V. Alagarsamy ◽  
G. Ravi ◽  
P. Subhash Chandra Bose ◽  
D. Saritha

Transdermal drug delivery is an alternative route for systemic drug delivery which minimizes the absorption and increases the bioavailability. The main objective of the present work was to develop a suitable matrix type transdermal drug delivery system of Clopidogrel bisulphate using different polymers HPMC E15, Eudragit L100 and to compare the drug release through physical method and chemical method. Matrix type transdermal patches containing Clopidogrel Bisulfate were prepared by solvent evaporation technique. The prepared transdermal patches were evaluated for Thickness, folding endurance, tensile strength and in vitro studies. The prepared transdermal drug delivery system of Clopidogrel bisulphate using different polymers such as HPMC E15 and Eudragit L 100 had shown good promising results for all the evaluated parameters. Based on the In-vitro drug release, drug content and folding endurance results formulation F4 was concluded as an optimized formulation which shows its higher percentage of drug release. Keywords: Transdermal drug delivery, Clopidogrel bisulphate, HPMC E15, Eudragit L100


2018 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Bhawana Sethi ◽  
Rupa Mazumder

Objective: The present work was aimed at preparation of transdermal patches by a solvent casting method using a varying concentration of polymers i.e. methocel (K15 and K100), ethocel (4 and 10), gelatin, chitosan, eudragit (RL and RS) grade using plasticizer (glycerin and propylene glycol).Methods: The ratio of drug to polymers and plasticizer was varied and the effect of formulation variables was studied. Prepared transdermal patches were evaluated for physicochemical properties, in-vitro permeation studies, content uniformity, primary skin irritation studies and FT-IR studies.Results: The formulated transdermal patch by using Methocel K 100 M showed good physical properties. The average weight of patches prepared using glycerin as a plasticizer were ranged from 42.33-67.00 mg and propylene glycol as a plasticizer were ranged from 40.67-67.67 mg. The percentage moisture absorption varies from 1.76 to 10.73 for patches formulated using glycerin and 2.28 to 7.97 for propylene glycol patches. The percentage moisture loss from patches prepared using glycerin was ranged from 2.75 to 11.54 and 2.87 to 12.02 from propylene glycol. The water vapour transmission rate from patches prepared using glycerin was ranged from 0.25 to 0.92 and 0.41 to 1.76. The formulated patch showed the acceptable quantity of medicament ranged from (100.20-101.05%). This result met the test content uniformity as per BP (85% to 115%). According to that, the drug was consistent throughout the patches. The formulation PGD is considered as the best formulation, since it shows a maximum in vitro drug release as 43.75 % at 24 h. The drug release kinetics studied showed that the majority of formulations was following zero order.Conclusion: In conclusion, controlled release transdermal drug delivery system patches of aliskiren can be prepared using polymer combinations, with a different plasticizer. The release rate of drug depends upon the polymer. However, release kinetics followed zero order.


Author(s):  
Subramanian S ◽  
Senith SK

Transdermal drug delivery is an alternative route for systemic drug delivery which minimizes the absorption and increases the bioavailability. Orally clopidogrel bisulfate has a short elimination half-life (7-8 h), low oral bioavailability (50 %) undergoes extensive first pass metabolism (85 %) and frequent high doses (75 mg) are required to maintain the therapeutic level as a result. The purpose of this research was formulation and evaluation of transdermal drug delivery system of clopidogrel bisulfate using various polymers such as HPMC and EC by solvent casting technique for improvement of bioavailability of drug and reducing toxic effects. The developed transdermal patches may increase the therapeutic efficacy and reduce toxic effect of clopidogrel bisulfate. The prepared transdermal drug delivery system of clopidogrel bisulfate using different polymers such as HPMC and EC had shown good & promising results for all the evaluated parameters. Based on the in vitro drug release, drug content, weight variation, tensile strength, thickness and folding endurance results formulation F2 was concluded as an optimized formulation which shows its higher percentage of drug release. Keyword: Clopidogrel bisulfate; Transdermal patch; TDDS; Solvent evaporation; In vitro drug release


2013 ◽  
Vol 12 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Sahoo Sunit Kumar ◽  
Baurahari Behury ◽  
Patil Sachinkumar

Stavudine has the half life of 1 to 1.5 hour and bioavailability in the body is 86% due to first-pass metabolism. The dose of stavudine is 40 mg two to three times daily depending on weight and gender; hence, it requires frequent dosing. Transdermal patch of stavudine was prepared to sustain the release and improve bioavailability of drug and patient compliance. Different formulations were prepared by using different concentrations of Eudragit RS 100 and Eudragit RL 100. The prepared formulations were evaluated for various parameters like weight, thickness, drug content, percentage moisture content, percentage moisture uptake, tensile strength, folding endurance, In vitro drug release and in vitro permeation studies. Also these patches were characterized by Field Emission Scanning Electron Microscopy and Fourier transforms Infrared Spectrosphotometry (FTIR). All formulations have shown 0 % constriction of the patches indicating 100% flatness of the transdermal patches. Thus, these formulations can maintain a smooth and uniform surface when they are functional onto skin. The folding endurance values of patches showed optimum flexibility of the patches. The moisture content and moisture uptake in the formulations of transdermal patch was found to be increased by increase in the concentration of Eudragit RS 100 and decreasing the concentration of Eudragit RL 100. FTIR study has shown absence of any interaction of the drug with the excipients. As concentration of Eudragit RL100 increased and subsequently the concentration of Eudragit RS100 decreased, the drug release was enhanced. Dhaka Univ. J. Pharm. Sci. 12(1): 63-69, 2013 (June) DOI: http://dx.doi.org/10.3329/dujps.v12i1.16302


2020 ◽  
Vol 10 (3) ◽  
pp. 185-196
Author(s):  
Sudha B. Patil ◽  
Syed Z. Inamdar ◽  
Kakarla R. Reddy ◽  
Anjanapura V. Raghu ◽  
Krishnamachari G. Akamanchi ◽  
...  

Background and Objectives: To develop electro-sensitive transdermal drug delivery systems (ETDDS) using polyacrylamide-grafted-pectin (PAAm-g-PCT) copolymer hydrogel for rivastigmine delivery. Methods: Free radical polymerization and alkaline hydrolysis technique was employed to synthesize PAAm-g-PCT copolymer hydrogel. The PAAm-g-PCT copolymeric hydrogel was used as a reservoir and cross-linked blend films of PCT and poly(vinyl alcohol) as rate-controlling membranes (RCMs) to prepare ETDDS. Results: The pH of the hydrogel reservoir was found to be in the range of 6.81 to 6.93 and drug content was 89.05 to 96.29%. The thickness of RCMs was in the range of 51 to 99 μ and RCMs showed permeability behavior against water vapors. There was a reduction in the water vapor transmission rate as the glutaraldehyde (GA) concentration was increased. The drug permeation rate from the ETDDS was enhanced under the influence of electric stimulus against the absence of an electric stimulus. The increase in flux by 1.5 fold was recorded with applied electric stimulus. The reduction in drug permeability observed when the concentration of GA was increased. Whereas, the permeability of the drug was augmented as an electric current was changed from 2 to 8 mA. The pulsatile drug release under “on– off” cycle of electric stimulus witnessed a faster drug release under ‘on’ condition and it was slow under ‘off’ condition. The alteration in skin composition after electrical stimulation was confirmed through histopathology studies. Conclusion: The PAAm-g-PCT copolymer hydrogel is a useful carrier for transdermal drug delivery activated by an electric signal to provide on-demand release of rivastigmine.


2018 ◽  
Vol 10 (4) ◽  
pp. 68
Author(s):  
Manish Kumar ◽  
Vishal Trivedi ◽  
Ajay Kumar Shukla ◽  
Suresh Kumar Dev

Objective: The objective of this research work was to develop a transdermal drug delivery system containing atenolol with different ratios of hydrophilic and hydrophobic polymeric combinations, using solvent evaporation technique and to examine the effect of hydrophilicity and hydrophobicity of polymers on the physicochemical and drug release properties of transdermal patches.Methods: Solvent casting method has been used to formulate transdermal patches. Hydroxypropyl methylcellulose (HPMC), Polyvinylpyrrolidone (PVP), Ethylcellulose (EC) in different combination ratios were used as the polymer. Propylene glycol was used as a plasticizer. Permeation enhancers such as span 80 were used to enhance permeation through the skin. In vitro diffusion study was carried out by franz diffusion cell using egg membrane as a semi-permeable membrane for diffusion.Results: Result showed that the thickness of the all batch of patches varied from 0.32 to 0.39 mm with uniformity of thickness in each formulation. Formulations F1 to F3 had high moisture content varied from 2.07±0.09 to 2.56±0.15 and high moisture uptake value varied from 3.21±0.35 to 4.09±0.38, due to a higher concentration of hydrophilic polymers. Drug content of all batches was ranged between 85.92±1.32 to 95.71±1.42. Folding endurance values off all batches were more than 75. Formulation batches F1 to F3 showed higher cumulative drug release varied from 61.34% to 68.11% as compared to formulation batches F4 to F6.Conclusion: Higher proportion of hydrophilic polymer in the formulation of transdermal patches, gives higher percentage drug release from prepared patches. The finding of the study indicates that hydrophilicity and hydrophobicity of polymer effects the physicochemical and drug release properties of transdermal patches and an optimum proportion of hydrophilic and hydrophobic polymer is required for the preparation of effective transdermal patches. 


2009 ◽  
Vol 12 (1) ◽  
pp. 88 ◽  
Author(s):  
Jose Juan Escobar-Chavez ◽  
Dalia Bonilla-Martínez ◽  
Martha Angélica Villegas-González ◽  
Isabel Marlen Rodríguez-Cruz ◽  
Clara Luisa Domínguez-Delgado

Abstract Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Application of ultrasound to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. Ultrasound has been used extensively for medical diagnostics and to a certain extent in medical therapy (physiotherapy, ultrasonic surgery, hyperthermia). Nevertheless, it has only recently become popular as a technique to enhance drug release from drug delivery systems. A number of studies suggest the use of ultrasound as an external mean of delivering drugs at increased rates and at desired times. This review presents the main findings in the field of sonophoresis, namely transdermal drug delivery and transdermal monitoring. Particular attention is paid to proposed enhancement mechanisms and trends in the field of topical and transdermal delivery.


Author(s):  
Rita N Wadetwar ◽  
Tejaswini Charde

Objective: The objective of the present work was the preparation of fast-dissolving film of tramadol HCl (TMH) using water-soluble polymer, to achieve faster onset of action, to improve patient compliance, ease of dosing, and bypass the first-pass metabolism. Methods: TMH oromucosal wafers were prepared using pullulan as natural, biodegradable polymer, and propylene glycol as plasticizer by solvent casting method. Formulation batches were prepared using 32 full-factorial designs. The prepared TMH oromucosal wafers were characterized for morphology, uniformity of weight, drug content, folding endurance, in vitro disintegration time (DT), % moisture content, surface pH, in vitro % drug release, ex vivo permeation studies, compatibility studies (differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray diffraction), and stability studies.Results: Optimized batch of mouth-dissolving film of TMH containing pullulan as polymer showed 98.67±0.11% drug release at 6 min. It showed better folding endurance 88 No. of folds, in vitro DT 5.11 s, surface pH 6.84±0.12 pH, thickness 0.17±0.11 mm, and percentage content uniformity 98.45±0.48%. Stability studies carried out for the best formulation FDF5 revealed that the formulation was stable.Conclusion: The results obtained in this research work clearly indicated a promising potential of fast-dissolving oral films using natural biodegradable polymer, pullulan which gave rapid drug delivery and rapid onset of action of centrally acting drug, TMH for patients suffering from pain.


Author(s):  
SARIPILLI RAJESWARI ◽  
RAJESWARI PULLABHATLA ◽  
CHUKKA YERNI SATYAVATHI

Bi-gels semi solid formulation is combination of organogel and hydrogel with better application property such as pharmaceutical and cosmetics. The main objective of this review is specially focuses on application of bi-gels as drug delivery vehicles by transdermal route. It contains two different phases which are polar and nonpolar due to which, it possess some significant features such as ability to deliver the hydrophilic and hydrophobic drugs which also have improved permeability of drugs, better spreading ability, and water wash ability. Hence, bigels have both organogels and hydrogels they can enhanced hydration of stratum corneum and also had an ability to manipulate the drug release rate from the dosage from.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Pooja Sharma ◽  
Anuj Chawla ◽  
Pravin Pawar

The aim of present investigation deals with the development of time-dependent and pH sensitive press-coated tablets for colon specific drug delivery of naproxen. The core tablets were prepared by wet granulation method then press coated with hydroxypropyl cellulose (HPC) or Eudragit RSPO : RLPO mixture and further coated with Eudragit S-100 by dip immerse method. Thein vitrodrug release study was conducted in different dissolution media such as pH 1.2, 6.8, and 7.4 with or without rat caecal content to simulate GIT conditions. Surface morphology and cross-sectional view of the tablets were visualized by scanning electron microscopy (SEM). All prepared batches were in compliance with the pharmacopoeial standards. The tablets which are compression coated with HPC followed by Eudragit S-100 coated showed highestin vitrodrug release of 98.10% in presence of rat caecal content. The SEM of tablets suggested that the number of pores got increased in pH 7.4 medium followed by dissolution of coating layer. The tablets coat erosion study suggested that the lag time depends upon the coating concentrations of polymers. A time-dependent hydrophilic polymer and pH sensitive polymer based press-coated tablets of naproxen were promising delivery for colon targeting.


Sign in / Sign up

Export Citation Format

Share Document