scholarly journals Assessment of Some Heavy Metal Levels and its Related Health Hazards in Two Staple Foods Grown in Mining Communities of Ebonyi State

Author(s):  
Uraku, Anayo Joseph ◽  
Chukwu, Ikechukwu ◽  
Uraku, Oluchi Helen ◽  
Edwin, Nzubechukwu ◽  
Ezeali Chukwu ◽  
...  

Background: This study assessed the levels of some heavy metals in two staple foods grown within mining sites at Ishiagu and Enyigba communities of Ebonyi State. The control site was Umuezeokoha community. The present study is significantly important in respect to hazardous effect of heavy metal accumulation in staple food as there was no or scarcity of data available in Nigeria on this aspect. Materials and Methods: The two commonly cultivated food crops namely Manihot esculentus (cassava) and Telfairia occidentalis (fluted pumpkin) were grown within <20m, 100m before mining sites. The crops were collected from the three farms at the peak of the harvesting period, processed and were analyzed for heavy metals using AAS technique. Results: The results revealed that heavy metals; Pb, Cu, Ni, Zn and Mn in Manihot esculentus tubers in all the farms within Ishiagu and Enyigba mining sites were comparable to each other and control site but Cr levels in control site was higher than others and that of WHO/FAO maximum permissible limit. Only As from A2 in Ishiagu had the highest value and exceeded WHO/FAO maximum permissible limit. Fe from B1, B2 in Enyigba and that of control had the highest values when compared to others but Fe in all samples investigated exceeded WHO/FAO maximum. Also, Pb, Cu, Ni, Zn, and Mn in Telfairia occidentalis leaves in all the farms within mining sites were comparable to control site except  As levels from  A2 in Ishiagu and from control site which was higher compare to others including WHO/FAO maximum permissible limit. Cr only from A2 in Ishiagu, B2 and B3 in Enyigba was highest even with WHO/FAO maximum permissible limit. Fe too from all the farms in Enyigba and control had highest values even with WHO/FAO maximum permissible limit. Conclusion: The results showed that the investigated food crops from two mining communities and the control site were not safe for consumption.

2021 ◽  
Vol 2 (1) ◽  
pp. 84-95
Author(s):  
David Okechukwu Okeke ◽  
◽  
Jonathan Chinenye Ifemeje ◽  

The level of heavy metals (Fe, Cu, As, Pb, Cd, Mg, Ca, Hg, Ni, Cr, Zn, Ag, Co, Mo, Se and Al) in soils and food crops (okra, cassava and rice) cultivated within selected mining sites in Ebonyi State, Nigeria were determined using FS240AA Atomic Absorption Spectrophotometer (AAS) according to the method of American Public Health Association (APHA). Soil samples were collected from Enyigba mining site, Ikwo mining site, AmeriAmekamining site, Izza mining site, MkpumeAkwatakwa mining site and MpumeAkwaokuku mining site while the food crop samples (okra, cassava and rice) were collected from the farmlands within the mining sites. Control samples were collected 500m away from the mining destinations were there was no evidence of mining activities on the soils. A total of sixty sub-samples and six control soil samples were collected for this study. Generally, the values of all the heavy metals analyzed for soil and food crop samples were higher than the values recommended by the World Health Organization (WHO), and those from the control site suggesting possible mobility of the metals from mining sites to farmlands through leaching and runoffs. The findings in this study also revealed that the food crops contain heavy metals exceeding the maximum permissible concentration, and could be detrimental to human health when they are consumed.


Author(s):  
Oguh C. Egwu ◽  
Uzoefuna C. Casmir ◽  
Ugwu C. Victor ◽  
Ubani C. Samuel ◽  
Musa A. Dickson ◽  
...  

The study investigate a series of selected heavy metal pollution of soil, the extent of their uptake by Telfairia occidentalis and Amaranthus cruentus as well as their ecological risk around dumpsite in Chanchaga Minna, Niger State, Nigeria. Soil samples were collected at 15 cm depth with the aid of soil auger and vegetable samples were collected from dumpsite and other samples with no activities served as control. The soil samples were collected at random and their physicochemical parameters such as pH, total nitrogen, total phosphorus, organic matter, total carbon and exchangeable cations (i.e., K+, Mg2+ and Na+) using a standard method and concentrations of the heavy metals in soils and vegetables, As, Cd, Cr, Cu, Hg and Pb were analyzed using flame Atomic Absorption Spectrometer (AAS). The ecological health risk assessment from the consumption of these vegetables was calculated using standard methods. The result showed a significant (p-value) increase of AC and TO in test soil samples relative to the control soils. The pH of the soil in dumpsite and control site was 5.93, and 7.35 respectively. Mean concentrations of As, Cd, Cr, Cu, Hg and Pb in the dump site were 6.35, 4.84, 6.67, 7.35, 5.72 and 4.96 mg/kg while the control site were 1.18, 0.28, 1.26, 6.83, 1.19 and 3.54 mg/kg respectively which was below the WHO/FAO limits of As (20), Cd (3.0), Cr (100), Cu (100), Hg (2.00) and Pb (50 mg/kg) for soil. The concentrations of As, Cd, Cr, Cu, Hg and Pb recorded in AC dump site were As (6.13), Cd (3.67), Cr (5.37), Cu (4.28), Hg (3.46), and Pb (4.52) and in TO As (5.67), Cd (3.13), Cr (4.67), Cu (3.65), Hg (3.19) and Pb (4.27 mg/kg) which were above the WHO/FAO permissible limits (0.5, 0.20, 0.3, 3.0, 0.1 and 0.3 mg/kg) respectively for edible vegetable. The concentrations of heavy metals in soils and vegetables from the dumpsite soil were significant (p < 0.05) from the controls. The bioaccumulation factor (BAF) for the vegetable showed that they exclude the element from soil. The Hazard Quotient (HQ) and Hazard index (HI) show that there is no harmful effect since the values obtain were not greater than >1. But continuous consumption can accumulate in the food chain especially for children. This study showed that the soils and vegetables within the vicinity of the dumpsites were polluted by heavy metals which can pose health risk. The study also calls for proper waste management practices and policy implementation.


2020 ◽  
Vol 10 (27) ◽  
pp. 200911
Author(s):  
Aung Zaw Tun ◽  
Pokkate Wongsasuluk ◽  
Wattasit Siriwong

Background. Artisanal and small-scale mining activities are widely practiced globally. Concentrations of heavy metals associated with gold, such as copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb) can increase in the environment as a result of mining activities, leading to environmental pollution and pose toxicity risks to humans and animals. Objectives. The aim of the present study was to investigate soil concentrations of toxic heavy metals in placer small-scale gold mining operations in Myanmar. Methods. Soil samples were collected from three placer small-scale gold mining sites: Site A located in the Hmawbon public protected forest, Site B and Site C, situated in the Nant-Kyin reserved forest around Nar Nant Htun village. At each site, soil samples were collected from four gold mining stages (ore processing, sluicing, panning, and amalgamation). Atomic absorption spectroscopy was utilized to examine the concentrations of As, Cd, Pb, and Hg. Results. The highest heavy metal concentrations were generally found in the amalgamation stages across all the gold mining sites. Across the three mining sites, the maximum heavy metal concentrations in the amalgamation stage were 22.170 mg.kg−1 for As, 3.070 mg.kg−1 for Cd, 77.440 mg.kg−1 for Hg, and 210.000 mg.kg−1 for Pb. Conclusions. The present study examined the concentrations of As, Cd, Hg and Pb in the soil of several small-scale gold mining sites in Banmauk Township, Myanmar. The results demonstrated the presence of high concentrations of heavy metals in the soil of the gold mining sites. Miners in this area work without proper personal protective equipment, and frequent exposure to heavy metals in the soil may cause adverse health effects. The present study provides baseline data for future risk assessment studies of heavy metal contamination in gold mines. Competing Interests. The authors declare no competing financial interests


Author(s):  
Himalaya Bhardwaj ◽  
Chanchal Singh ◽  
Shashi Nayyar

Background: The present study was planned to assess the biochemical and micro-minerals profile in blood and other tissues of buffaloes environmentally exposed to heavy metals. Methods: Tissues (liver and kidney) and blood samples (n=50) were collected from local abattoir. Based on the level of heavy metals, animals were classified as exposed and control was found to have heavy metals in normal range. Blood and tissue sample from both groups were analyzed for micro-minerals, antioxidant status, metabolic profile and expression of metallothionein-2 (MT-2).Result: Exposed group was found to have significantly (p less than 0.05) higher level of arsenic and chromium as compared to the control group. Level of Copper (Cu) and zinc (Zn) were observed to be significantly (p less than 0.05) higher in exposed animals as compared to control but their concentrations were below the permissible limit in both the groups. Cobalt (Co) and iron (Fe) level were normal in all tissues but Fe level was lower than permissible limit in blood. Malonldialdehyde (MDA), the activities of superoxide dismutase (SOD) and catalase (CAT) was found to be significantly increased (p less than 0.05) in tissues and blood of exposed group. The exposed buffaloes were found to have significantly (p less than 0.05) increased glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK), alkaline phosphatase (ALP), urea and creatinine level as compared to control group. Fold change expression of metallothionein (MT-2), had maximum in liver, followed by kidney and blood as compared to control group. The study concluded that heavy metals exposure and low concentration of micro-minerals in buffaloes could result in oxidative damage and alterations in the expression of metallothionein.


2020 ◽  
Vol 48 (4) ◽  
pp. 2095-2113
Author(s):  
Radu L. SUMALAN ◽  
Cornelia MUNTEAN ◽  
Ana KOSTOV ◽  
Daniel KRŽANOVIĆ ◽  
Noemi L. JUCSOR ◽  
...  

Heavy metal pollution, manifested by the accumulation, toxicity and persistence in soil, water, air, and living organisms, is a major environmental problem that requires energetic resolution. Mining tailing areas contain metal minerals such as Cu, Zn, Pb, Cr and Cd in high concentrations that pollute the environment and pose threats to human health. Phytoremediation represents a sustainable, long-term, and relatively inexpensive strategy, thus proving to be convenient for stabilizing and improving the environment in former heavy metal-polluted mining sites. This study presents the bioremediation potential of Silphium perfoliatum L. plants, in the vegetative stages of leaf rosette formation, grown on soil polluted with heavy metals from mining dumps in Moldova-Noua, in the Western part of Romania. The bioaccumulation factor (BAF), translocation factor (TF), metal uptake (MU) and removal efficiency (RE) of Cu, Zn, Cr and Pb by S. perfoliatum plants were determined in a potted experiment in controlled environmental conditions. The reference quantities of heavy metals have been determined in the studied soil sample. The experiment followed the dynamics of the translocation and accumulation of heavy metals in the soil, in the various organs of the silphium plants, during the formation of the leaf rosette (13-18 BBCH). The determination of the amount of heavy metals in soil and plants was achieved by the method of digestion with hydrochloric and nitric acid 3/1 (v/v) quantified by atomic absorption spectroscopy (AAS). The obtained experimental results demonstrate that the substrate has a high heavy metal content being at the alert threshold for Zn (260.01 mg kg-1 in substrate compared with alert threshold 300 mg kg-1) and at intervention thresholds for other metals (Cu -234.66 mg kg-1/200 mg kg-1; 299.08 mg kg-1/300 mg kg-1 and Pb-175.18 mg kg-1/100 mg kg-1). The average concentration of the metals determined in dynamics in the dry biomass of plants varied between roots, petioles, and laminas. The root is the main accumulator for Cu and Cr (Cu – 37.32 mg kg-1 -13 BBCH to 43.89 mg kg-1-15 BBCH and 80.71 mg kg-1 – 18 BBCH; Cr – 57.43 mg kg-1 – 13 BBCH to 93.36 mg kg-1 -18 BBCH), and for Zn and Pb the lamina seems to carry the same function. Preliminary results show that Silphium perfoliatum may be a viable alternative in the bioremediation and treatment of heavy metal-contaminated area.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prabal Barua ◽  
Syed Hafizur Rahman ◽  
Maitri Barua

Abstract Coastal area of Bangladesh is one of the significant ecologically productive areas and full of rich biodiversity that includes variety of species that are endemic to this region. The Shipbreaking activity has turned out to be more significant within the economic situation of the poverty-stricken Bangladesh. The study vicinity was alienated into the Shipbreaking zone and control site for proportional investigation. The study was administered to assess the changing pattern of the concentration of trace metals in soil Soil samples of the study areas and its impact on fish diversity of the ship breaking area in Bangladesh over the 40 years. From the finding of the study, it had been found that the concentration of the heavy metals found within the ship breaking area followed a pattern within the following fashion Fe>Pb>Cr>Mn>Zn>Ni>Cu>Cd>Hg. The finding of this heavy metal analysis of sediments demonstrated that there has been in an increment of two to eight times of selected heavy metals from the finding of 1980 to 2019. The study compared with the two relatively pristine or less impacted (undisturbed) areas, that served because of the reference zone. These studies also found that about 30 species of fishes became irregular or are threatened with extinction than they were 40 years ago.


2020 ◽  
Vol 8 (2) ◽  
pp. 149
Author(s):  
NUR ALIM NATSIR ◽  
YUSRIANTI HANIKE ◽  
MUHAMMAD RIJAL ◽  
SUHAEDIR BACHTIAR

Differences in the accumulation of heavy metals lead and cadmium in water, sediments and mangrove organs (roots, stems and leaves) found in the waters of Tulehu, Maluku Province. Samples were taken from three observation stations, namely stopping ships that are not operating (station 1), Tulehu harbor (station 2) and Control (station 3). Pb and Cd were analyzed using Atomic Absorption Spectrophotometer. Pb and Cd content in sediments is higher than in water. The highest Pb and Cd content is found in the stems then in the roots and leaves (stems> roots> leaves). Mangroves are one of the aquatic organisms that have the ability to absorb heavy metals in the aquatic environment. Key words: Mangrove, Pb, Cd, Heavy Metal


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Peace Makuleke ◽  
Veronica M. Ngole-Jeme

Landfills are major sources of environmental pollution. This study evaluated heavy metal concentrations in soils and plants around the closed Lumberstewart landfill in Bulawayo, Zimbabwe, to determine the pollution potential of a closed landfill and the risks they present to plants growing in this environment and surrounding communities. Soil samples were collected at depths of 0–30 cm, 30–60 cm, and 60–90 cm around the landfill and at a control site and characterized for various properties and concentrations of Cd, Cu, Cr, Fe, Ni, and Zn. Samples of Datura stramonium, collected from the same sites where soil samples were collected, were also analyzed for the same heavy metals. The soils were sandy, mostly acidic (5.01 < pH < 7.65) with low organic matter content (<2%) and cation exchange capacity (<15 meq/100 g). These properties varied with depth around the landfill. Heavy metals concentrations in the soils and Datura stramonium followed the order Fe > Zn > Cu > Cr > Ni > Cd with samples from around the landfill having higher concentrations than samples from the control site. Soil heavy metal enrichment was highest at a depth of 30–60 cm. Pollution load index (PLI) values indicated that all sites around the landfill were polluted (PLI > 1). Heavy metal transfer coefficient in Datura stramonium ranged between 0.0 and 209 with <60% of the variation observed in heavy metal transfer coefficient in Datura stramonium explained by the extent of heavy metal enrichment in the soils. More than 20 years after closure of the landfill, there are indications that leachate migration may still be going on around the landfill. Monitoring of environments around closed landfills needs to be ongoing to mitigate negative impacts on humans and the environment.


2021 ◽  
Vol 5 (2) ◽  
pp. 34-45
Author(s):  
N. Abdullahi ◽  
E. C Igwe ◽  
M. A. Dandago ◽  
N. B. Umar

The qualities of agricultural soil and water are diminishing continuously due to the rigorous anthropogenic activities currently stocking the soil with a lot of toxic chemicals including heavy metals. Heavy metals are highly persistent and non-biodegradable, control of their contamination is very tricky to handle. Their presence in soil and water is detrimental to food crops and humans. Various sources of heavy metals contaminants and the role of urban food production on human heavy metal contamination were discussed.Heavy metals have their way into the soil and food crops through wastewater irrigation and production in contaminated soil. The habitual heavy metals contamination sources for food crops are wastewater irrigation, abuse of agrochemicals, production in the contaminated field, atmospheric deposit when foods are exposed to contaminated air, and unethical mining activities. Agricultural soil in urban and peri-urban areas are heavily contaminated with heavy metal due to various anthropogenic activities. Wastewater irrigation intensify the contamination by supplying the soil with more heavy metals. The heavy metals are passed to food during production and subsequently to humans after consumption.


2021 ◽  
Vol 9 (1) ◽  
pp. 25-35
Author(s):  
Periyasamy Dhevagi ◽  
◽  
Ambikapathi Ramya ◽  
Murugaiyan Sindhuja ◽  
Sengottiyan Priyatharshini ◽  
...  

Food crops grown in contaminated soils have a greater accumulation of heavy metals and the consumption of food crops grown in the contaminated soils are the source of metals that enters into the human body. Rice being a major food crop, the presence of heavy metals should be monitored regularly for reducing health risk. The analysis of total heavy metal always overestimates the content which leads to misinterpretation of results; however, bioaccessible heavy metal analysis projects the actual health risk. Hence, the present study aims to assess the bioavailable form of heavy metals in rice. The rice samples were collected from 20 different places and used for the inherent and bioavailable metal estimation. In vitro simulated digestion method was applied for bioaccessible metal analysis. Metal concentration in polished rice ranged from 0.10 to 0.82, 0.10 to 1.07, 0.11 to 0.56 and 0.23 to 1.09 mg kg-1 for Lead (Pb), Nickel (Ni), Cadmium (Cd) and Chromium (Cr), respectively. Twenty five percent of the samples recorded less than 0.028, 0.01, 0.01, and 0.03 mg kg-1 of bioaccessible Pb, Ni, Cd, and Cr, respectively. A significant negative correlation was observed between total metal concentration and bioaccessibility percentage. Targeted Hazard Quotient (THQ) of all the metals were less than one for adults indicating that there were no health risks, which undoubtedly reveals the importance of bioaccessible metal analysis. Hence, regular monitoring of heavy metals is essential to reduce the intensive accumulation in the human food chain. Also, the present study has opened up a wide scope on human health risk assessment using an in vitro digestion model.


Sign in / Sign up

Export Citation Format

Share Document