scholarly journals Trends in Resistance to Cefazolin in a Military Hospital in Alkharj

Author(s):  
Nehad J. Ahmed

Aim: This study aimed to describe the trends in resistance to cefazolin in a military hospital in Alkharj. Methodology: This was a retrospective study that was conducted in Alkharj to describe the trends in resistance to cefazolin from 1st of January 2020 to 30th of June 2021. The results of bacterial cultures were collected from the microbiology laboratory in the hospital. Results: The susceptibility rate of gram negative bacteria to cefazolin in 2020 was more than 50% except Enterobacter cloacae (susceptibility rate=0) and that the resistance of Escherichia coli to cefazolin was increased from 36% in 2020 to 48% in 2021. The present study showed that cefazolin should not use to treat infections caused by Enterobacter cloacae because of the high resistance rate (100%). Conclusion: The present study showed that the bacterial resistance of several pathogens to cefazolin was high. It is important to monitor antimicrobial susceptibility continuously and to use antibiotics wisely to minimize emergence of drug resistant bacteria.

2011 ◽  
Vol 56 (3) ◽  
pp. 1452-1457 ◽  
Author(s):  
Yen-Hsu Chen ◽  
Po-Liang Lu ◽  
Cheng-Hua Huang ◽  
Chun-Hsing Liao ◽  
Chin-Te Lu ◽  
...  

ABSTRACTThe TigecyclineIn VitroSurveillance in Taiwan (TIST) study, a nationwide, prospective surveillance during 2006 to 2010, collected a total of 7,793 clinical isolates, including methicillin-resistantStaphylococcus aureus(MRSA) (n= 1,834), penicillin-resistantStreptococcus pneumoniae(PRSP) (n= 423), vancomycin-resistant enterococci (VRE) (n= 219), extended-spectrum β-lactamase (ESBL)-producingEscherichia coli(n= 1,141), ESBL-producingKlebsiella pneumoniae(n= 1,330),Acinetobacter baumannii(n= 1,645), andStenotrophomonas maltophilia(n= 903), from different specimens from 20 different hospitals in Taiwan. MICs of tigecycline were determined following the criteria of the U.S. Food and Drug Administration (FDA) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST-2011). Among drug-resistant Gram-positive pathogens, all of the PRSP isolates were susceptible to tigecycline (MIC90, 0.03 μg/ml), and only one MRSA isolate (MIC90, 0.5 μg/ml) and three VRE isolates (MIC90, 0.125 μg/ml) were nonsusceptible to tigecycline. Among the Gram-negative bacteria, the tigecycline susceptibility rates were 99.65% for ESBL-producingE. coli(MIC90, 0.5 μg/ml) and 96.32% for ESBL-producingK. pneumoniae(MIC90, 2 μg/ml) when interpreted by FDA criteria but were 98.7% and 85.8%, respectively, when interpreted by EUCAST-2011 criteria. The susceptibility rate forA. baumannii(MIC90, 4 μg/ml) decreased from 80.9% in 2006 to 55.3% in 2009 but increased to 73.4% in 2010. A bimodal MIC distribution was found among carbapenem-susceptibleA. baumanniiisolates, and a unimodal MIC distribution was found among carbapenem-nonsusceptibleA. baumanniiisolates. In Taiwan, tigecycline continues to have excellentin vitroactivity against several major clinically important drug-resistant bacteria, with the exception ofA. baumannii.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1543 ◽  
Author(s):  
Buthaina Jubeh ◽  
Zeinab Breijyeh ◽  
Rafik Karaman

Bacterial resistance to present antibiotics is emerging at a high pace that makes the development of new treatments a must. At the same time, the development of novel antibiotics for resistant bacteria is a slow-paced process. Amid the massive need for new drug treatments to combat resistance, time and effort preserving approaches, like the prodrug approach, are most needed. Prodrugs are pharmacologically inactive entities of active drugs that undergo biotransformation before eliciting their pharmacological effects. A prodrug strategy can be used to revive drugs discarded due to a lack of appropriate pharmacokinetic and drug-like properties, or high host toxicity. A special advantage of the use of the prodrug approach in the era of bacterial resistance is targeting resistant bacteria by developing prodrugs that require bacterium-specific enzymes to release the active drug. In this article, we review the up-to-date implementation of prodrugs to develop medications that are active against drug-resistant bacteria.


2019 ◽  
Vol 35 (1) ◽  
pp. 61-66
Author(s):  
Sunjukta Ahsan ◽  
Rayhan Mahmud ◽  
Kajal Ahsan ◽  
Shamima Begum

Infections due to Gram-negative bacteria are common affairs in cancer patients during aggressive therapy. The present study characterizedmulti-drug resistant bacteria (MDR) isolated from cancer aspirates collected from patients admitted to the National Cancer Hospital in Dhaka, Bangladesh. A total of 210 aspirate samples were collected from cancer patients. Out of 210 samples Acinetobacter spp.led the list of isolates (8.89%, n=45). Of these species, 50% exhibited resistance to Amoxycillin and Nitrofurantoin, each, 25% exhibited resistant to Cefotaxime, Azithromycin, Ciprofloxacin, Clindamycin, and Sulfamethoxazole. A total of 33.33% of the Bordetella spp.which accounted 6.67%of the total isolates exhibited resistance to Cefotaxime. All oftheLegionellapneumophila,comprising 4.4%of the isolated species, wereresistant to Cefotaxime, Azithromycin, and Clindamycin.In contrast, 50% were resistant to Cefotaxime, Azithromycin, and Ceftriaxone. Of the Escherichia coli(4.4%, n=45) isolated,50% exhibited resistance to Cefotaxime, Clindamycin, Ceftriaxone, Amoxycillinand Sulfamethoxazole.The only isolate of Klebsiella sp. was demonstrated to be an ESBL producer. The isolation of multidrug resistant bacteria from cancer patients is of particular concern in Bangladesh where cancer and drug resistance are both common phenomena but treatment facilities are poor. To our knowledge this is the first report of the isolation of drug resistant bacteria from cancer patients from Dhaka city. Bangladesh J Microbiol, Volume 35 Number 1 June 2018, pp 61-66


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Jitender Yadav ◽  
Sana Ismaeel ◽  
Ayub Qadri

ABSTRACT Polymyxin B, used to treat infections caused by antibiotic-resistant Gram-negative bacteria, produces nephrotoxicity at its current dosage. We show that a combination of nonbactericidal concentration of this drug and lysophosphatidylcholine (LPC) potently inhibits growth of Salmonella and at least two other Gram-negative bacteria in vitro. This combination makes bacterial membrane porous and causes degradation of DnaK, the regulator of protein folding. Polymyxin B-LPC combination may be an effective and safer regimen against drug-resistant bacteria.


Author(s):  
Guillaume Miltgen ◽  
Thomas Garrigos ◽  
Pascal Cholley ◽  
Marine Deleume ◽  
Nicolas Allou ◽  
...  

AbstractConcomitant prevention of SARS-CoV-2 and extensively drug-resistant bacteria transmission is a difficult challenge in intensive care units dedicated to COVID-19 patients. We report a nosocomial cluster of four patients carrying NDM-1 plasmid-encoded carbapenemase-producing Enterobacter cloacae. Two main factors may have contributed to cross-transmission: misuse of gloves and absence of change of personal protective equipment, in the context of COVID-19-associated shortage. This work highlights the importance of maintaining infection control measures to prevent CPE cross-transmission despite the difficult context and that this type of outbreak can potentially involve several species of Enterobacterales.


Author(s):  
Ziheng Zhang ◽  
Jun Li ◽  
Linlin Ma ◽  
Xingxing Yang ◽  
Bin Fei ◽  
...  

We reported previously that poly (3-hydroxybutyrate) (PHB) oligomer is an effective antimicrobial agent against gram-positive bacteria, gram-negative bacteria, fungi and multi-drug resistant bacteria. In this work, it was further found that polyethylene glycol (PEG) can promote the antimicrobial effect of PHB oligomer synergistically. Three hypothetic mechanisms were proposed, that is, generation of new antimicrobial components, degradation of PHB macromolecules and dissolution/dispersion of PHB oligomer by PEG. With a series of systematic experiments and characterizations of HPLC-MS, it was deducted that dissolution/dispersion of PHB oligomer dominated the synergistic antimicrobial effect between PHB oligomer and PEG. This work demonstrates a way for promoting antimicrobial effect of PHB oligomer and other antimicrobial agents through improving hydrophilicity.


Author(s):  
EMTENAN M HANAFI ◽  
ENAS N DANIAL

The unresponsive use of antibiotics led to the appearance of multiple drug-resistant bacteria strains. Studying the mechanism by which bacteria can resist antibiotics, the so called quorum sensing and biofilm formation, enabled the researchers to find bioactive compounds, derived from eukaryotes and prokaryotes. The disrupt of this mechanism is called quorum sensing inhibitors or quorum quenchers. This article provides an overview on the current research done on such bioactive compounds, the possible use of them as antibiotic alternatives, what are the advantage and disadvantages, the source from which it has been extracted, and how it may succeed to overcome bacterial resistance. The recommendation of researchers is to use some of these natural antimicrobial compounds combined to lower doses of antibiotics for treatment, the fastest way to limit the adverse effects of the exploitation of antibiotics and to avoid bacterial resistance.


2019 ◽  
Vol 68 (2) ◽  
pp. 225-232 ◽  
Author(s):  
TINGTING MAO ◽  
HUIJUAN ZHAI ◽  
GUANGCAI DUAN ◽  
HAIYAN YANG

Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential.


Author(s):  
Sonali Gangwar ◽  
Keerti Kaushik ◽  
Maya Datt Joshi

Serious infectious diseases are caused by bacterial pathogens that represents a serious public health concern. Antimicrobial agents are indicated for the treatment bacterial infections.Various bacteria carries several resistance genes also called multidrug resistant (MDR). Multidrug resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting the reservoirs of antibiotic resistant bacteria are present outside the hospital. Drug resistant bacteria that are selected with a single drug are also frequently multi-drug resistant against multiple structurally different drugs, thus confounding the chemotherapeutic efficacy of infectious disease caused by such pathogenic variants. The molecular mechanisms by which bacteria have common resistance to antibiotics are diverse and complex. This review highlights the mechanism of bacterial resistance to antimicrobials.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4594
Author(s):  
Rushui Bai ◽  
Liying Peng ◽  
Qiannan Sun ◽  
Yunfan Zhang ◽  
Lingyun Zhang ◽  
...  

The oral cavity harbors complex microbial communities, which leads to biomaterial-associated infections (BAI) during dental and orthopedic treatments. Conventional antibiotic treatments have met great challenges recently due to the increasing emergency of drug-resistant bacteria. To tackle this clinical issue, antibacterial surface treatments, containing surface modification and coatings, of dental and orthopedic materials have become an area of intensive interest now. Among various antibacterial agents used in surface treatments, metallic agents possess unique properties, mainly including broad-spectrum antibacterial properties, low potential to develop bacterial resistance, relative biocompatibility, and chemical stability. Therefore, this review mainly focuses on underlying antibacterial applications and the mechanisms of metallic agents in dentistry and orthopedics. An overview of the present review indicates that much work remains to be done to deepen the understanding of antibacterial mechanisms and potential side-effects of metallic agents.


Sign in / Sign up

Export Citation Format

Share Document