scholarly journals Determination of Pickering Nanoemulsion by Eudragit Rl-100 Nanoparticle as Oral Drug Delivery for Poorly Soluble

Author(s):  
Ashish Y. Pawar ◽  
Khanderao R. Jadhav ◽  
Sagar S. Patil ◽  
Pallavi R. Jadhav

Objective: The purpose of this research study was to develop Ketoprofen-loaded Pickering nanoemulsion with the help of polymeric nanoparticles [NPs]. The pickering nanoemulsion  formulation is developed using Eudragit RL 100, which has the greater ability to stabilize the formulation as well as it better controls the  release of drug upon oral administration. Method: In the present study, Ketoprofen - loaded Pickering nanoemulsion were prepared using an ultrasonic emulsification process. For the preparation of the Nanoemulsion, an aqueous phase of the nanodispersion of nanoparticle is used while Captex -300 and drug premix is used as oil phase. The nanoemulsion is formulated by using a probe sonicator with different ratios of aqueous phase and oil phase. The preformulation study of polymer or drug is done by FTIR and DSC and the drug - polymer compatibility was confirmed by FTIR. The prepared formulation was evaluated for physical appearance, pH, Viscosity, In vitro drug release, Particle size, Zeta Potential, Polydispersivity index, and transmission electron microscopy and stability. The Formulation is optimized for the different concentrations of the aqueous phase and oil phase with concentrations of drug and polymer. Results: All the prepared formulations show particle size in between 100-500nm hence it indicats formation of nanoemulsion. The zeta potential is -46mv which indicates good stability of formulation. The In vitro drug release shows maximum drug release i.e. 96.93% in 10 hrs which shows that the release of drug is prolonged due to formation of Polymer NPs. Conclusion: Thus the drug release was significantly controlled and slowed down when nanoemulsion is formulated by using NPs in comparison with control. These results fulfilled the objective of the study. This study opens new prospects on the formulation of Pickering nanoemulsion. 

Author(s):  
Suriyakala Perumal Chandran ◽  
Kannikaparameswari Nachimuthu

Objective: Colorectal cancer is one of the most commonly diagnosed cancer and also most common gastrointestinal malignancy with high prevalence rate in the younger population. Usually, cancer cells are surrounded by a fibrin coat which is resistant to fibrinolytic degradation. This fibrin coat is act as self-protective against natural killing mechanism. The main objective was to prepare papain-loaded solid lipid nanoparticles (P-SLN) by melt dispersion-ultrasonication method and investigated the cytotoxic efficacy against colorectal adenocarcinoma (human colorectal adenocarcinoma [HCT 15]) cells.Methods: Optimized polymer ratio was characterized by differential scanning calorimetry, Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, entrapment efficiency, particle size and zeta potential analysis, in vitro drug release, and in vitro cytotoxicity studies on HCT-15 colorectal adenocarcinoma cells.Results: The results showed that the particle size, morphological character and zeta potential value of optimized batch P-SLN were 265 nm, spherical and −26.5 Mv, respectively. The in vitro drug profile of P-SLN exhibited that it produced sustain drug release, and the cell viability of HCT-15 against P-SLN shown better efficacy than pure papain enzyme.Conclusion: P-SLNs were successfully prepared and investigated the in vitro drug release and in vitro cell viability against HCT-15 cell line.


Author(s):  
REMYA P. N. ◽  
DAMODHARAN N.

Objective: The aim of the present study is to develop solid lipid nanoparticles (SLNs) of Nimodipine using hot homogenization followed by ultrasonication technique and to improve the dissolution characteristics of the drug. Methods: The Nimodipine-loaded SLN was prepared using palmitic acid and stearic acid as a lipid matrix and Tween-80 as an emulsifier by a hot homogenization and ultra-sonication method. The physicochemical characteristics of SLN were investigated for entrapment efficiency, zeta potential, in vitro drug release, particle size analysis, Fourier transform infrared studies, scanning electron microscopy, and stability studies. Results: The mean particle size, PDI, Zeta potential and entrapment efficiency of optimized Nimodipine SLN formulation of stearic acid was found to be 119.54 nm, 0.165,-17.60mV, 85% and for palmitic acid was found to be 132.54 nm, 0.155,-17.0mV, 81% respectively. In vitro drug release studies indicated that after an initial burst release, SLN could provide prolonged release of Nimodipine. The selected SLNs have shown good stability for a period of 180 d. Conclusion: SLN formulations showed the best results in EE as well as in vitro drug release and therefore, these results indicate that SLN might be a promising delivery system to enhance the release of Nimodipine.


2021 ◽  
Vol 11 (4) ◽  

Recently, solid lipid Nano-particles have received much attention by the researchers owing to its biodegradability, biocompatibility and the ability to deliver a wide range of drugs. The aim of the present study was to design Diltiazem solid lipid Nano-particles and to evaluate them. Diltiazem solid lipid Nano-particles were prepared by hot homogenization technique using different lipids (Tristearin, GMS and Comprital), soy lecithin as stabilizers and tween 80, Poloxamer as surfactants. The Nano-particles were evaluated for particle size & PDI, zeta potential, entrapment efficiency and in vitro drug release. The particle size ranged from 49.7 to 523.7 nm. PDI of all formulations were good within the range of 0.189 to 0.427. The zeta potential ranged from -10.5 to -29.6 Mv, Entrapment efficiency of all formulations were observed was in the range of 78.68 to 95.23 %. The cumulative percentage release of Diltiazem from different Diltiazem Nano-particles varied from 53.36 to 88.74% depending upon the drug lipid ratio and the type of lipid used. The average percentage of drug released from different SLNs after 24 hours showed in the following order: F9 (53.35%) < F6 (56.75%) < F4 (61.74%) < F7 (63.8%) < F5(67.77%) < F8(69.04%) < F3(75.31%) < F1(79.36%) <F2 (88.74%) respectively. The release kinetic studies showed that the release was first order diffusion controlled and the n values obtained from the Korsmeyer-Peppa’s model indicated the release mechanism was Quasi-Fickian type (n-value of 0.47). Keywords: Diltiazem, solid lipid Nano-particles, FTIR, in vitro drug release.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1218
Author(s):  
Mohammad A. Altamimi ◽  
Afzal Hussain ◽  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Usamah Abdulrahman Alnemer

Introduction: Luteolin (LUT) is natural flavonoid with multiple therapeutic potentials and is explored for transdermal delivery using a nanocarrier system. LUT loaded cationic nanoemulsions (CNE1–CNE9) using bergamot oil (BO) were developed, optimized, and characterized in terms of in vitro and ex vivo parameters for improved permeation. Materials and methods: The solubility study of LUT was carried out in selected excipients, namely BO, cremophor EL (CEL as surfactant), labrasol (LAB), and oleylamine (OA as cationic charge inducer). Formulations were characterized with globular size, polydispersity index (PDI), zeta potential, pH, and thermodynamic stability studies. The optimized formulation (CNE4) was selected for comparative investigations (% transmittance as %T, morphology, chemical compatibility, drug content, in vitro % drug release, ex vivo skin permeation, and drug deposition, DD) against ANE4 (anionic nanoemulsion for comparison) and drug suspension (DS). Results: Formulations such as CNE1–CNE9 and ANE4 (except CNE6 and CNE8) were found to be stable. The optimized CNE4 based on the lowest value of globular size (112 nm), minimum PDI (0.15), and optimum zeta potential (+26 mV) was selected for comparative assessment against ANE4 and DS. The %T values of CNE1–CNE9 were found to be ˃95% and CEL content slightly improved the %T value. The spherical CNE4 was compatible with excipients and showed % total drug content in the range of 97.9–99.7%. In vitro drug release values from CNE4 and ANE4 were significantly higher than DS. Moreover, permeation flux (138.82 ± 8.4 µg/cm2·h), enhancement ratio (8.23), and DD (10.98%) were remarkably higher than DS. Thus, ex vivo parameters were relatively high as compared to DS which may be attributed to nanonization, surfactant-mediated reversible changes in skin lipid matrix, and electrostatic interaction of nanoglobules with the cellular surface. Conclusion: Transdermal delivery of LUT can be a suitable alternative to oral drug delivery for augmented skin permeation and drug deposition.


2017 ◽  
Vol 9 (6) ◽  
pp. 10 ◽  
Author(s):  
P. Manimekalai ◽  
R. Dhanalakshmi ◽  
R. Manavalan

Objective: The objective of this study was to prepare ceftriaxone sodium chitosan nanoparticles (CS-NP) from different drug and polymer ratios and analyze their physicochemical characteristics.Methods: Ceftriaxone sodium loaded chitosan nanoparticles were prepared using chitosan as a polymer and tri sodium polyphosphate (TPP) as cross linking agent by ionic cross linking and coacervation with the aid of sonication. Various trials have been carried out for the confirmation of nanoformulation. Parameters such as the zeta potential, polydispersity, particle size, entrapment efficiency, in vitro drug release Thermo gravimetric analysis and scanning electron microscope of the nanoparticles were assessed for confirmation of nanoformulation.Results: The formulated nanoparticles showed mean particle size, polydispersity index and zeta potential to be 183.1±8.42 nm, 0.212±0.05, +38.5±1.6 mV respectively and the drug loading was found to be 46.42±10 %. In vitro drug release was showed a biphasic release pattern with initial burst release followed by sustained release of formulated nanoparticles. The cumulative percentage of drug release was about 83.08 %.Conclusion: Formulation F2 was found to be the best formulation with a higher cumulative percentage of drug release. Modified ionic gelation method can be utilized for the development of chitosan nanoparticles of ceftriaxone sodium. Polymer and crosslinking agent concentrations and sonication time are rate-limiting factors for the development of the optimized formulation. The chitosan nanoparticles developed would be capable of sustained delivery of ceftriaxone sodium.


2020 ◽  
Vol 10 (2-s) ◽  
pp. 14-21
Author(s):  
Deepika Chandel ◽  
Shivani Uppal ◽  
Surinder Kumar Mehta ◽  
Geeta Shukla

The present study is an attempt to synthesize nanosized guar gum carriers encapsulating celecoxib as the chemopreventive agent for experimental colorectal cancer (CRC).  Guar gum nanoparticles without celecoxib (eGGNPs) and celecoxib loaded guar gum nanoparticles (cGGNPs) were prepared by oil-in-water emulsification and in situ polymer crosslinking method. Electron microscopy, zeta potential and fourier transform infrared spectra analysis was used to affirm the size, stability and morphology of the nanoparticles. In-vitro drug release was investigated using dialysis method. Further, the effect of nanoparticles (eGGNPs & cGGNPs) was evaluated on Caco 2 colon cancer cell lines. Spherical guar gum nanoparticles were obtained in the size range of 200±6nm with zeta potential of -32.1mV indicating good stability of the GGNPs with drug loading of 30±3.2%, and drug release following zero order kinetics. The eGGNPs had no effect on Caco2 cell viability whereas the cGGNPs showed time and concentration dependent growth inhibition of Caco 2 cells. These findings suggest the successful preparation of chemopreventive nanoparticles that can be targeted as the prophylactic agent for experimental colorectal cancer. Keywords: nanoparticles, guar gum, celecoxib, colorectal cancer, release kinetics, cytotoxicity


2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1555-S1568
Author(s):  
Vibha Chourasiya ◽  
Sarvesh Bohrey ◽  
Archna Pandey

The objectives of this work were to formulate and optimize amlodipine besylate loaded polymeric nanoparticles by using factorial design. The emulsion solvent evaporation method was employed successfully to produce the drug loaded polymeric nanoparticles and the optimization was done by the help of the 24 factorial design. The effect of the main preparation variables on the dependent variables such as nanoparticle size and % drug entrapment efficiency was studied for the optimization of the nanoparticles. The characterization of these nanoparticles was done by the different parameters such as interaction between the excipients, size, morphology, zeta potential, % drug entrapment efficiency, % process yield, and in-vitro drug release behavior. FTIR, DLS, TEM, AFM, zeta potential studies, and dialysis bag method were performed for this purpose. The in vitro drug release data were analyzed by different kinetic models to know the release mechanism. The optimized nanoparticles were spherical in shape and showed particle size 91.5 ± 4.3 nm, PDI 0.368 ± 0.014, zeta potential −17.5 mV, % drug entrapment efficiency 74.06 ± 2.1%, and % process yield 78.51 ± 1.8%. The release kinetics studies revealed that drug release from the nanoparticles follow the Korsmeyer–Peppas model.


Author(s):  
Roshni Das ◽  
Marina Koland ◽  
S. M. Sindhoor

Background: Natamycin belongs to a large group of naturally occurring polyene antifungal antibiotics derived from Streptomyces natalensis. Natamycin has a restrictive pharmaceutical role because of its extremely low aqueous solubility, which severely reduces the bioavailability of the drug. To improve the absorption of the drug, nanocrystals of natamycin were prepared and incorporated into in situ gel. Aim: To improve the solubility and absorption of natamycin nanocrystals by preparing nanocrystal in situ gel of natamycin for ophthalmic delivery Methodology: Natamycin nanocrystal was prepared using Sono-Precipitation method. Box-Behnken approach was employed to assess the influence of independent variables, namely concentration of stabilizer, sonication time and amplitude on particle size and zeta potential of the prepared nanocrystal. Optimized natamycin nanocrystal in situ gel formulations was characterized for various parameters like pH, viscosity, drug content, in vitro drug release and ex vivo permeation studies. Results: The optimized formulation of natamycin nanocrystal with a particle size of  293.9nm and zeta potential -14.6mV was incorporated into in situ gels. The pH triggered in situ gel was prepared using Carbopol and Hydroxypropyl methylcellulose (HPMC)., which showed clear preparation, pH of the formulation was closed to the pH of tear fluid, i.e., 7.4, viscosity showed pseudoplastic behaviour with immediate gelation remained for an extended period, and the drug content was around 99.70%. From the characterizations given above, PF-4 was optimized and evaluated for In vitro drug release showing slow and sustained release when compared to the marketed formulation and followed first-order kinetics with the diffusion-controlled mechanism. Ex vivo permeation through goat's cornea of PF-4 showed better permeation than marketed formulation. The stability studies of PF-4 showed that formulation was stable at the appropriate condition. Conclusion: Nanocrystals formulations of natamycin was successfully formulated and incorporated into in situ gels. Further in vivo studies need to be carried out for confirmation of pharmacological activity


Sign in / Sign up

Export Citation Format

Share Document