scholarly journals Glibenclamide-Loaded Polyvinylpyrrolidone (PVP) Nanoparticles and Glibenclamide-Loaded Soluplus® Nanomicelles Intended for Parenteral Administration: Effect of Solvents Mixtures on the Electrosprayed Nanoparticles and In vitro Characterization

Author(s):  
Maryam Al-Ghezi ◽  
Raghad F. Almilly ◽  
Wedad K. Ali

Background and Objective: Glibenclamide (GB) is showing promising results in central nervous system (CNS) injuries treatment where intravenous administration of GB could overcome the oral limitations and assure maximum bioavailability. Dry powder of GB nanoparticles reconstituted for parenteral administration was prepared through electrospraying. Methods: The drug was incorporated with two polymers, polyvinylpyrrolidone (PVP) and Soluplus® (SP), at ratios 1:4 and 1:2 (GB/polymer). Different solvent mixtures were used to formulate the particles. Physicochemical characteristics were investigated. Results: The size of the GB-PVP nanoparticle ranged between (409-775) nm with a spherical, disk, fractured and, agglomerated morphology, while those of the GB-SP nanomicelles were of (447-785) nm with mostly irregular morphology, in consequence to the used solvents mixtures. The high encapsulation efficiency ≥ 98% reflects the well dispersed drug molecules within the polymer matrix, further confirmed by X-ray diffraction and infrared spectroscopy. GB-SP colloidal dispersions showed neutral zeta potentials with a cloud point of 36 ˚C, indicating prolonged circulation time and stability after parenteral administration. GB/SP nanomicelles at ratio 1:4 showed a sustained drug release reaching ≥ 94% in 36 hours. Conclusion: The GB-SP nanomicelles with extended drug release and regarding physicochemical properties represent a remarkable drug delivery system for parenteral administration.

2015 ◽  
Vol 27 (03) ◽  
pp. 1550022
Author(s):  
Cheon Jung Lee ◽  
Su Young Kim ◽  
Hyun Gu Lee ◽  
Jaewon Yang ◽  
Jin Young Park ◽  
...  

This study evaluates the properties of Tramadol- HCl -loaded polyoxalate (TH-loaded POX) microspheres prepared by oil-in-oil (O1/O2) emulsion solvent evaporation method, specifically designed for sustained drug release. Morphology and physicochemical characteristics of the as-fabricated were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR) spectroscopy, while the encapsulation efficiency and release profile of drug (Tramadol- HCl , TH) from POX microspheres were assessed by high-performance liquid chromatography (HPLC). The influence of reaction temperature, stirring speed, initial drug ratio, molecular weight (Mw) and concentration of polyoxalate (POX) on the fabrication of TH-loaded POX microspheres were investigated. Results showed that the characteristics of the microspheres and drug-loaded content can be optimized by adjusting the parameters of preparation conditions. Also, the degradation behavior of TH-loaded POX microspheres was evaluated from in vitro test for 2 weeks. Overall, the results showed that POX microsphere can be one of the promising polymers for controlled injection release formulation with site-specific drug release capabilities.


2020 ◽  
Vol 85 (9) ◽  
pp. 1223-1235 ◽  
Author(s):  
Milad Abniki ◽  
Ali Moghimi ◽  
Fariborz Azizinejad

The study proposed a new formulation to the sustained delivery of mefenamate anions intercalated into Mg?Al layered double hydroxide (LDH) for oral administration. Different experimental conditions were evaluated to incorporate the mefenamic acid (MEF) and gum arabic (GUM) into LDH structure. The LDH?MEF and LDH?MEF/GUM were covered with chitosan (CHIT). In another experiment, LDH?Cl was used to adsorb mefenamate anions and evaluate the mechanism. The products of LDH were characterized by using different techniques such as FESEM (field emission scanning electron microscopy), XRD (X-ray diffraction), FTIR (Fourier transform infrared) spectroscopy and TGA (thermogravimetric analysis). The X-ray diffraction patterns and FTIR analyses confirmed that the MEF and GUM were successfully intercalated into the interlayer space of LDH. TG analysis verified that the thermal stability of intercalated MEF in the form of bionanocomposite (LDH?MEF/ /GUM/CHIT) was enhanced. Finally, In vitro drug release experiments of bionanocomposite at a pH of 1.2 (acidic medium) and a pH of 7.4 (phosphate buffer medium) showed sustained release profiles with mefenamate anions as an anti-inflammatory model drug.


2019 ◽  
Vol 1 (1) ◽  
pp. 18-24
Author(s):  
Lakshmanaperumal Sundarabharathi ◽  
Mahendran Chinnaswamy ◽  
Hemalatha Parangusan ◽  
Deepalekshmi Ponnamma ◽  
Mariam Al Ali Al-Maadeed

Hydroxyapatite (Ca5(PO4)3OH) is a well-known bioceramics material used in medical applications because of its ability to form direct chemical bonds with living tissues. In this context, we investigate the biocompatibility and dielectric properties of Sr2+-substituted hydroxyapatite nanoparticles were synthesized by sol-gel method. The influence of strontium on the crystal structure, functional group, morphological, electrical properties, and biocompatibility of as-synthesized nano-hydroxyapatite samples was analyzed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM). Dielectrical properties of the bioactive Sr-HA sample were investigated by a dielectric impedance spectroscopy method. The observed results illustrate the incorporation of Sr2+ ions in the apatite lattice could influence the pure HA properties, by reducing the crystallite size and crystallinity quite consistent with the morphology variation. The ac conductivity (σac) increased with an increasing applied frequency confirmed that prepared HA sample exhibited the universal power law nature. Further, the in vitro drug loading and release studies using doxycycline as a model drug demonstrate that the Sr2+ -HA nanoparticles show high drug adsorption capacity and sustained drug release. Thus, the improved bioceramics system could be a promising candidate for future biomedical applications.


2012 ◽  
Vol 164 ◽  
pp. 487-491
Author(s):  
Deng Guang Yu ◽  
Xia Wang ◽  
Yao Zu Liao ◽  
Ying Li ◽  
Wei Qian ◽  
...  

An electrohydrodynamic atomization (EHDA) process was exploited to prepare helicid-loaded zein microparticles. SEM observations showed that all the particles prepared under varied voltages were round and solid with their sizes gradually decreased from 3.4 ± 1.7 to 1.1 ± 0.5 μm as the applied voltages rose from 6 to 18 kV. Wide-angle X-ray diffraction analyses demonstrated that helicid had been totally converted into an amorphous state in the zein matrix microparticles. Attenuated total reflectance Fourier transform infrared analysis disclosed that the hydrogen bonding presented between helicid and zein molecules. In vitro dissolution tests verified that the microparticles were able to provide a fine sustained drug release profile. The present study provides an easy way to develop novel biomaterials for drug delivery and for providing sustained drug release profiles.


Author(s):  
P. Rajesh Kumar ◽  
M. Ravinder Nayak ◽  
A. Srinivasa Rao

Cubosomes are altered cubic phase systems, which are emerging as promising drug delivery system for the delivery of both hydrophilic and lipophilic drugs. Docetaxel is an antineoplastic agent that has a unique mechanism of action as an inhibitor of cellular mitosis and that currently plays a central role in the therapy of many solid tumors including breast and lung cancer. Docetaxel in the form of cubosomes. The main aim of present research was to encapsulate, Docetaxel in cubosomes for sustained drug release. Docetaxel loaded cubosomes were prepared by Bottom-Up Method technique using Glyceryl Mono Oleate and pluronic F-127 and Pluronic F68 in different ratios. The prepared formulations were subjected to evaluation studies for excipient compatibility, particle size, drug content, entrapment efficiency and In vitro drug release. The maximum entrapment efficiency was found as 90.15% with, and In vitro drug release as 99.37%. Stability studies were also conducted for the formulations as per protocol mentioned in ICH guidelines. These results suggest that the cubosomal formulation F4 is suitable for the delivery of Docetaxel.


Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.


Author(s):  
Dillip Kumar Behera ◽  
Kampal Mishra ◽  
Padmolochan Nayak

In this present work, chitosan (CS) crosslink with polyaniline (PANI) with montmorilonite (MMT) called as (CSPANI/MMT) and CS crosslink with PANI without MMT called as (CS-PANI) were prepared by employing the solution casting method. Further the formation of nanocomposites CS-PANI/MMT and CS-PANI were investigated using XRD, FTIR, SEM and tensile strength. Water uptake and swelling ratio of the CS-PANI and CS-PANI/MMT were found to decrease with increase in concentration of clay. Mechanical properties of the CS-PANI and CS-PANI/MMT were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the nanoclay content. In vitro drug release study on CS-PANI and CS-PANI/MMT indicated pronounced sustained release of doxorubicin by the incorporation of clay particles in the CS polymer matrix. Overall CSPANI/MMT nanocomposite films exhibited improved mechanical and sustained drug release properties than CS-PANI.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 260
Author(s):  
Mariana Morais ◽  
Patrícia Coimbra ◽  
Maria Eugénia Pina

The visual impairment that often leads to blindness causes a higher morbidity rate. The goal of this work is to create a novel biodegradable polymeric implant obtained from coaxial fibers containing the dispersed drug—acetazolamide—in order to achieve sustained drug release and increase patient compliance, which is of the highest importance. Firstly, during this work, uncoated implants were produced by electrospinning, and rolled in the shape of small cylinders that were composed of uniaxial and coaxial fibers with immobilized drug inside. The fibers were composed by PCL (poly ε-caprolactone) and Lutrol F127 (poly (oxyethylene-b-oxypropylene-b-oxyethylene)). The prepared implants exhibited a fast rate of drug release, which led to the preparation of new implants incorporating the same formulation but with an additional coating film prepared by solvent casting and comprising PCL and Lutrol F127 or PCL and Luwax EVA 3 ((poly (ethylene-co-vinyl acetate)). Implants were characterized and in vitro release profiles of acetazolamide were obtained in phosphate buffered saline (PBS) at 37 °C. The release profile of the acetazolamide from coated implant containing Luwax EVA 3 is considerably slower than what was observed in case of coated implants containing Lutrol F127, allowing a sustained release and an innovation relatively to other ocular drug delivery systems.


2021 ◽  
Vol 09 ◽  
Author(s):  
Harshad S Kapare ◽  
Sathiyanarayanan L ◽  
Arulmozhi S ◽  
Kakasaheb Mahadik

Background: Honey bee propolis is one of the natural product reported in various traditional systems of medicines including Ayurveda. Caffeic acid phenethyl ester (CAPE) is an active constituent of propolis which is well known for its anticancer potential. The therapeutic effects of CAPE are restricted owing to its less aqueous solubility and low bioavailability. Objective: In this study CAPE loaded folic acid conjugated nanoparticle system (CLFPN) was investigated to enhance solubility, achieve sustained drug release and improved cytotoxicity of CAPE. Methods: Formulation development, characterization and optimization were carried out by design of experiment approach. In vitro and in vivo cytotoxicity study was carried out for optimized formulations. Results: Developed nanoparticles showed particle size and encapsulation efficiency of 170 ± 2 - 195 ± 3 nm and 75.66 ± 1.52 - 78.80 ± 1.25 % respectively. Optimized formulation CLFPN showed sustained drug release over a period of 42 h. GI50 concentration was decreased by 46.09% for formulation as compared to CAPE in MCF-7 cells indicating targeting effect of CLFPN. An improved in vitro cytotoxic effect was reflected in in-vivo Daltons Ascites Lymphoma model by reducing tumor cells count. Conclusion: The desired nanoparticle characteristic with improved in vivo and in vitro cytotoxicity was shown by developed formulation. Thus it can be further investigated for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document