Formulation Development and Evaluation of Migraine Almotriptan Loaded Ethosomes Using Box Behnken Design

Author(s):  
Megha Parashar ◽  
Ashish Jain

One of the most common nervous system illnesses is headache disorders, which are characterized by chronic headaches. In Present investigation Almotriptan loaded Ethosomes were prepared by water phase addition method. The three independent factors including Phosphotidylcholine: Cholestrol: DSPE (6:3:1molar ratio), Surfactant concentration and sonication time. A factorial design 3*3(3 factor 3 level) was applied to prepare 17 formulation. Optimization of ethosomal preparation was carried out by applying Box Behnken response surface randomized factorial design following quadratic model using Design of Experiment (DOE) software version 11.04.0.  The factor Soya PC: Cholesterol: DSPE in molar ration (6:3:1), Concentration of Tween-80 and sonication time were selected as dependable process and formulation factors that can be effect formulation characteristics like entrapment efficiency, average vesicle size, Polydispersity Index (PDI). All other factors like sonication speed and rotation speed was kept constant All the formulation were prepared by simple solvent evaporation thin film formation method and characterized for the drug entrapment, average vesicle size and PDI, shape morphology. Formulations were optimized on the basis of responses such as average vesicle size, PDI, and entrapment efficiency. All the characterized values of the responses were putted in the formulation design table and analyse to best fitted model for the design. It was observed that, quadaratic model is best fitted model for the design. The prepared ethosomes formulation can further incorporated in situ gel for effective treatment of migraine.

Author(s):  
Marwa H. Abdallah ◽  
Amr S. Abu Lila ◽  
Md. Khalid Anwer ◽  
El-Sayed Khafagy ◽  
Muqtader Mohammad ◽  
...  

The present work was aimed to develop a transferosomal gel of ibuprofen (IBU) for the amelioration of psoriasis like inflammation. Three formulation of IBU loaded transferosomes (TFs1-TFs3) were prepared using different proportions of lipid (phospholipon 90H) and surfactant (tween 80) and further evaluated for vesicle size, zeta potential (ZP), entrapment efficiency and in vitro drug release. The IBU loaded transferosomes (TFs2) was optimized with vesicle size (217±8.4 nm), PDI (0.102), ZP (-31.5±4.3 mV), entrapment efficiency (88.4±6.9%) and drug loading (44.2±2.9%). Further, the optimized IBU loaded transferosomes (TFs2) was incorporated into 1% carbopol 934 gel base and characterized for homogeneity, extrudability, viscosity and drug content. The in vivo pharmacodynamic study of gel exhibited reduction in psoriasis like inflammation in mice. The ibuprofen loaded transferosomal gel was successfully developed and has shown the potential to be a new therapy against psoriasis like inflammation.


2021 ◽  
Vol 09 ◽  
Author(s):  
Mona Qushawy

Background: Metformin (MF) is an antidiabetic drug that belongs to class III of the biopharmaceutical classification system (BCS) which is characterized by high solubility and low permeability. Objective: The study aimed to prepare metformin as nanostructured lipid carriers (MF-NLCs) to control the drug release and enhance its permeability through the biological membrane. Method: 22 full factorial design was used to make the design of MF-NLCs formulations. MF-NLCs were prepared by hot-melt homogenization-ultra sonication technique using beeswax as solid lipid in presence of liquid lipid (either capryol 90 or oleic acid) and surfactant (either poloxamer 188 or tween 80). Results: The entrapment efficiency (EE%) of MF-NLCs was ranged from 85.2±2.5 to 96.5±1.8%. The particle size was in the nanoscale (134.6±4.1 to 264.1±4.6 nm). The value of zeta potential has a negative value ranged from -25.6±1.1 to -39.4±0.9 mV. The PDI value was in the range of (0.253±0.01 to 0.496±0.02). The cumulative drug release was calculated for MF-NLCs and it was found that Q12h ranged from 90.5±1.7 % for MF-NLC1 to 99.3±2.8 for MF-NLC4. Infra-red (IR) spectroscopy and differential scanning calorimetry (DSC) studies revealed the compatibility of the drug with other ingredients. MF-NLC4 was found to the optimized formulation with the best responses. Conclusion: 22 full factorial design succeed to obtain an optimized formulation which controls the drug release and increases the drug penetration.


Author(s):  
ISKANDARSYAH ISKANDARSYAH ◽  
CAMELIA DWI PUTRI MASRIJAL ◽  
HARMITA HARMITA

Objective: The aim of this study was to develop transferosome vesicles for the transdermal drug delivery of lynestrenol.Methods: The lynestrenol transferosome vesicle was made by encapsulating the drug in a variation of phosphatidylcholine and Tween 80 by the thinlayerhydration method. The resulting transferosome vesicles were modified with a time variation of 30, 60, 90, and 120 min, and sonication variationswere paused and not paused. Particle size evaluation, polydispersity (PDI), and entrapment efficiency (%EE) were carried out on the variation ofsonication time.Results: The evaluation results showed that sonication without pauses showed better %EE and particle size than sonication with pauses andincreasing concentration of Tween 80 (edge activator). The %EE increased, and particle size decreased with increasing sonication time; PDI of vesicleswas heterogeneous with increasing sonication time. The %EE in formulas F1 and F2 after 120 min was 73.06% and 76.06% (paused) and 80.40% and82.97% (without paused). The particle size of formula F1 and F2 after 120 min 575.4 nm and 471.6 nm (paused) and 524.1 nm and 434.7 nm (withoutpaused). The PDI formulas of F1 and F2 after 120 min were 0.69 and 0.763 (paused) and 0.84 and 0.59 (without paused).Conclusion: Based on the results of the transferosome vesicle characteristics, it was shown that the optimal vesicle composition for packaginglynestrenol was vesicles that were composed of phosphatidylcholine and Tween 80 without pauses and could potentially be used as a transdermaldrug delivery system.


Author(s):  
NAVEEN GUPTA ◽  
SHAILESH JAIN

Objective: The objective of this investigation was to develop and statistically optimize deformable vesicles such as transfersomes and transethosomes of Naproxen sodium by employing 33factorial designs through software Design expert version 12 (Box–Behnken design) for dermal delivery. Methods: The levels of the drug, phosphatidylcholine, and span 80 (independent variables) were varied to study the influence on vesicle size and % entrapment efficiency (dependent variables) of transfersomes and for transethosomes, the levels of phosphatidylcholine, ethanol, and span 80 were selected as independent variables Second-order quadratic polynomial equation, 2D and 3D contour plots represented the relationship between variables and desired response. The optimization process was carried out using desirability plots and point prediction techniques. Results: Results of the present study demonstrated that optimized transfersomes and transethosomes showed vesicle sizes of 114.91 nm and 102.91 nm respectively, while entrapment efficiency of 80.11 % and 86.97%, respectively. Both formulations showed high zeta potential values indicating the stability of the optimized formulation. ANOVA statistical results showed a significant difference (P<0.05). Conclusion: The results indicated that the independent variable plays a crucial role in optimizing a formulation that can be used for further research studies. Present preliminary study data provided strong evidence that the optimized deformable vesicular formulations through box Behnken factorial design can be a potentially useful drug carrier for naproxen sodium dermal delivery with minimum vesicle size and efficient entrapment efficiency.


Topiramate (TPM) is an anti-epileptic drug used in the treatment of epilepsy and seizures. The study was designed with three aims. First, to enhance the solubility and bioavailability of BCS class III drug TPM; second, to ease administration of the formulation to the epileptic patient, during an attack, and third, to decrease the dose of drug for enduring treatment. Formulation of TPM niosomes was optimized by changing the concentration of Tween, Labrafil and cholesterol using response surface design. Further the TPM niosomes were prepared by using ether injection method. The formulation was then evaluated for vesicle size, entrapment efficiency and in-vitro drug release study. FTIR and DSC studies were performed for pure drug and optimized batch. The vesicle size of the optimized batch was found to be 0. 35 nm. The %entrapment efficiency and %drug release of optimized batch was found to be 94.64% and 92.027% respectively. From the present study it can be concluded that the developed niosomes of TPM has shown great potential in treatment of epilepsy.


Author(s):  
Anamika Saxena Saxena ◽  
Santosh Kitawat ◽  
Kalpesh Gaur ◽  
Virendra Singh

The main goal of any drug delivery system is to achieve desired concentration of the drug in blood or tissue, which is therapeutically effective and nontoxic for a prolonged period. Various attempts have been made to develop gastroretentive delivery systems such as high density system, swelling, floating system. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. Gastric emptying is a complex process and makes in vivo performance of the drug delivery systems uncertain. In order to avoid this variability, efforts have been made to increase the retention time of the drug-delivery systems for more than 12 hours. The floating or hydrodynamically controlled drug delivery systems are useful in such application. Background of the research: Diltiazem HCL (DTZ), has short biological half life of 3-4 h, requires rather high frequency of administration. Due to repeated administration there may be chances of patient incompliance and toxicity problems. Objective: The objective of study was to develop sustained release alginate beads of DTZ for reduction in dosing frequency, high bioavailability and better patient compliance. Methodology: Five formulations prepared by using different drug to polymer ratios, were evaluated for relevant parameters and compared. Alginate beads were prepared by ionotropic external gelation technique using CaCl2 as cross linking agent. Prepared beads were evaluated for % yield, entrapment efficiency, swelling index in 0.1N HCL, drug release study and SEM analysis. In order to improve %EE and drug release, LMP and sunflower oil were used as copolymers along with sodium alginate.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 923
Author(s):  
Shadab Md ◽  
Nabil A. Alhakamy ◽  
Hibah M. Aldawsari ◽  
Mohammad Husain ◽  
Nazia Khan ◽  
...  

Plumbagin (PLM) is a phytochemical which has shown cytotoxicity against of cancer cells both in vitro and in vivo. However, the clinical application of PLM has been hindered due to poor aqueous solubility and low bioavailability. The aim of the present study was to develop, optimize and evaluate PLM-loaded glycerosome (GM) gel and compare with conventional liposome (CL) for therapeutic efficacy against skin cancer. The GM formulations were optimized by employing design expert software by 3-level 3-factor design. The prepared GMs were characterized in vitro for vesicle size, size distribution, zeta potential, vesicle deformability, drug release, skin permeation, retention, texture, antioxidant and cytotoxicity activities. The optimized formulation showed a vesicle size of 119.20 ± 15.67 nm with a polydispersity index (PDI) of 0.145 ± 0.02, the zeta potential of −27 ± 5.12 mV and entrapment efficiency of 76.42 ± 9.98%. The optimized PLM-loaded GM formulation was transformed into a pre-formed gel which was prepared using Carbopol 934 polymer. The drug diffusion fluxes of CL gel and GM-loaded gel were 23.31 ±6.0 and 79.43 ± 12.43 µg/ cm2/h, respectively. The result of texture analysis revealed the adequate hardness, cohesiveness, consistency, and viscosity of the developed GM-loaded gel compared to CL gel. The confocal images showed that glycerosomal gel has deeper skin layer penetration as compared to the control solution. GM-loaded gel treated rat skin showed significantly (p < 0.05) higher drug accumulation in the dermis, higher cytotoxicity and higher antioxidant activity as compared to CL gel and PLM suspension. Thus, findings revealed that novel GM-loaded gel could be potential carriers for therapeutic intervention in skin cancer.


Author(s):  
Aliasgar J Kundawala ◽  
Khushbu S Chauhan ◽  
Harsha V Patel ◽  
Swati K Kurtkoti

Budesonide is an anti-asthmatic agent which is used to control the symptoms of asthma like bronchospasm, oedema. Drug delivered to lung through inhalation will provide systemic and local drug delivery at lower dose in chronic and acute diseases. Dry powder inhalers are the best choice for targeting the anti-asthmatic drugs through pulmonary route. The objective of the present study is to prepare inhalable lipid coated budesonide microparticles by spray drying method so effective delivery of budesonide to the lungs can be achieved. The microparticles in the form of dry powder were obtained by either spray drying liposomal drug suspension or lipid drug suspension. The liposomes were initially prepared by solvent evaporation method using Hydrogenated Soyabean Phosphatidylcholine and Cholesterol (1:1, 1:2, 2:1) as lipid carrier and then spray dried later with mannitol as bulking agent at different lipid to diluent ratio (1:1.25, 1:2.5 & 1:5). The liposomes and liposomal dry powder were evaluated for vesicle size, % entrapment efficiency, in vitro drug release studies, powder characteristics, aerosol performance and stability studies. The liposomes prepared showed vesicle size (2-8 µm), Entrapment efficiency (92.22%) at lipid: drug ratio of (2.5:1) and observed 80.41 % drug release in 24 hrs. Pro-liposomes prepared by spray drying of liposomal drug suspension (LSD1) showed emitted dose, mean mass aerodynamic diameter, geometric standard deviation and fine particle fraction of 99.01%, 3.12 µm, 1.78 and 43.5% along with good powder properties. The spray dried powder was found to be stable at 4 ± 2 °C & 65% ± 5 % RH. The inhalable microparticles containing Budesonide containing lipid dry powder was successfully prepared by spray drying method that showed good aerodynamic properties and stability with mannitol as diluent. The microparticles produced with this novel approach could deliver drug on target via inhalation route and also ease manufacture process at large scale in fewer production steps.


Author(s):  
Shan-Ting Hsu ◽  
Y. Lawrence Yao

Poly(L-lactic acid) (PLLA) has been shown to have potential medical usage such as in drug delivery because it can degrade into bioabsorbable products in physiological environments, and its degradation is affected by crystallinity. In this paper, the effect of film formation method and annealing on the crystallinity of PLLA are investigated. The films are made through solvent casting and spin coating methods, and subsequent annealing is conducted. The resulting crystalline morphology, structure, conformation, and intermolecular interaction are examined using optical microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. It is observed that solvent casting produces category 1 spherulites while annealed spin coated films leads to spherulites of category 2. Distinct lamellar structures and intermolecular interactions in the two kinds of films have been shown. The results enable better understanding of the crystallinity in PLLA, which is essential for its drug delivery application.


Sign in / Sign up

Export Citation Format

Share Document