scholarly journals Screening and in Silico Validation of Anti-Microbial Peptides Derived from Lysostaphin, Entero and Endolysin

Author(s):  
Kirthick Kumaran A. S ◽  
Vijayashree Priyadharsini J. ◽  
A. S. Smiline Girija ◽  
P. Sankar Ganesh

Introduction: Antimicrobial peptides (AMPs) are small molecules which are known to exert destructive effects upon pathogenic microorganisms. AMPs are designed from proteins obtained from various sources and tested under in vitro conditions to deduce their antimicrobial activity. Materials and Methods: A few of the peptidoglycan hydrolases such as lysostaphin (AAB53783.1), enterolysin (AGG79281.1), and endolysin (YP_009901016.1) were selected for the study based on an extensive text mining process. The protein sequences of the proteins were retrieved from the NCBI (National Centre for Biotechnology Information) database in the FASTA format (https://www.ncbi.nlm.nih.gov/protein/). Results and Discussion :In the antimicrobial protein lysostaphin, three antimicrobial peptide are been found, in which two is active and other is inactive, and one has antifungal property with a score of -0.15, and one having cell penetrating property, in which all are non toxic. Conclusion: The present study predicts AMPs from lysostaphin, entero and endolysins. These peptides were found to possess antifungal, anti-biofilm properties. Most of the peptides predicted were found to be non-cell penetrating and non-toxic.

2019 ◽  
Vol 26 (30) ◽  
pp. 5609-5624
Author(s):  
Dijana Saftić ◽  
Željka Ban ◽  
Josipa Matić ◽  
Lidija-Marija Tumirv ◽  
Ivo Piantanida

: Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder – nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.


Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 350-353 ◽  
Author(s):  
JH Joist ◽  
RK Baker

Abstract We previously demonstrated that platelets can be labeled with 111Inoxine with high labeling efficiency and that 111In is not liberated from labeled platelets during the platelet release reaction or prolonged in vitro storage. In view of these findings, we examined the potential usefulness of loss of 111In from labeled platelets as an indicator or platelet damage by comparing the loss of 111In with that of 51Cr and LDH (in some experiments also with platelet factor 3 availability) under different conditions of platelet injury. When washed human platelets labeled with either 51Cr-chromate or 111In-oxine were exposed to increasing concentrations of detergents (Triton X-100, lysolecithin), threshold, rate, and extent of loss of 111In, 51Cr and, LDH were similar. In contrast, when labeled platelets were depleted of metabolic energy by incubation in glucose-free Tyrode albumin solution or glucose-depleted plasma in the presence of antimycin A and 2-deoxy-D- glucose, loss of 51Cr (and PF3a) occurred earlier and progressed at a faster rate than that of 111In or LDH. Similar results were obtained when platelets were exposed to increasing concentrations of PlA1 antibody, causing complement-mediated immune injury. The findings indicate that with certain agents that cause rapid platelet disruption (lysis), different platelet constituents are lost at similar rates. However, under conditions of more subtle or slowly progressive platelet injury, small molecules such as adenine nucleotides (51Cr) may escape earlier and at faster rates than larger molecules such as LDH or 111In- binding platelet protein. Thus, neither 111In loss nor LDH loss appear to be suitable indicators for sublytic or prelytic platelet injury.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S25-S26
Author(s):  
Jingjing Ma ◽  
Emma Wu ◽  
Ye Li ◽  
William Seibel ◽  
Le Shen ◽  
...  

Abstract Compromised epithelial barrier function is known to be associated with inflammatory bowel disease (IBD) and may contribute to disease development. One mechanism of barrier dysfunction is increased expression of paracellular tight junction ion and water channels formed by claudins. Claudin-2 and -15 are two such channels. We hypothesize that blocking these channels could be a viable therapeutic approach to treat diarrhea. In an effort to develop blockers of these channels, we turn to our previously developed and validated in silico models of claudin-15 (Samanta et al. 2018). We reasoned that compounds that can bind with the interior of claudin pores can limit paracellular water and ion flux. Thus, we used docking algorithms to search for putative small molecules that bind in the claudin-15 pore. AutoDock Vina was initially used to assess rigid docking using small compound databases. The small molecules were analyzed based on binding affinity to the pore and visualized using VMD for their potential blockage of the channel. Clusters of binding modes were identified based on the prominent interacting residues of the protein with the small molecules. We initially screened 10,500 compounds from within the UIC Centre for Drug Discovery and a cross-section of 10,000 compounds from the NCI open compound repository. This initial screen allowed us to identify 2 first-in-class selective claudin-15 blockers with efficacy in MDCK monolayers induced to express claudin-15 and in wildtype duodenum. Next, we screened the entire NCI open compound repository for additional molecules structurally related to our best initially identified molecule and this has allowed us to identify 13 additional molecules that increase TER of claudin-15 expressing MDCK monolayers by 90–160%. Additionally, these molecules possess similar structural components that will be collected in a fragment library and explored through molecular dynamics simulations. We also developed a claudin-2 homology model on which we are performing docking studies and in vitro measurements, which we expect will result in similar candidate ligands for blocking claudin-2. Our study will provide important insight into the role of claudin-dependent cation permeability in fundamental physiology, which we believe will lead to the utility of claudin blockers as a novel and much needed approach to treat diseases such as IBD.


2021 ◽  
pp. 153537022110021
Author(s):  
Subburaman Mohan ◽  
Karthikeyan Muthusamy ◽  
Selvaraman Nagamani ◽  
Chandrasekhar Kesavan

Activating anabolic receptor-mediated signaling is essential for stimulating new bone formation and for promoting bone healing in humans. Fibroblast growth factor receptor (FGFR) 3 is reported to be an important positive regulator of osteogenesis. Presently, recombinant proteins are used to stimulate FGFR3 function but have limitations for therapy due to expense and stability. Therefore, there is a need for identification of novel small molecules binding to FGFR3 that promote biological function. In silico molecular docking and high-throughput virtual screening on zinc database identified seven compounds predicted to bind to an active site within the βCʹ-βE loop, specific to FGFR3. All seven compounds fall within an acceptable range of ADME/T properties. Four compounds showed a 30–65% oral absorption rate. Density functional theory analysis revealed a high HOMO-LUMO gap, reflecting high molecular stability for compounds 14977614 and 13509082. Five compounds exhibited mutagenicity, while the other three compounds presented irritability. Computational mutagenesis predicted that mutating G322 affected compound binding to FGFR3. Molecular dynamics simulation revealed compound 14977614 is stable in binding to FGFR3. Furthermore, compound 14977614, with an oral absorption rate of 60% and high molecular stability, produced significant increases in both proliferation and differentiation of bone marrow stromal cells in vitro. Anti-FGFR3 treatment completely blocked the stimulatory effect of 14977614 on BMSC proliferation. Ex vivo treatment of mouse calvaria in organ culture for seven days with 14977614 increased mineralization and expression levels of bone formation markers. In conclusion, computational analyses identified seven compounds that bind to the FGFR3, and in vitro studies showed that compound 14977614 exerts significant biological effects on osteogenic cells.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Moein Dehbashi ◽  
Zohreh Hojati ◽  
Majid Motovali-bashi ◽  
Mazdak Ganjalikhani-Hakemi ◽  
Akihiro Shimosaka ◽  
...  

AbstractCancer recurrence presents a huge challenge in cancer patient management. Immune escape is a key mechanism of cancer progression and metastatic dissemination. CD25 is expressed in regulatory T (Treg) cells including tumor-infiltrating Treg cells (TI-Tregs). These cells specially activate and reinforce immune escape mechanism of cancers. The suppression of CD25/IL-2 interaction would be useful against Treg cells activation and ultimately immune escape of cancer. Here, software, web servers and databases were used, at which in silico designed small interfering RNAs (siRNAs), de novo designed peptides and virtual screened small molecules against CD25 were introduced for the prospect of eliminating cancer immune escape and obtaining successful treatment. We obtained siRNAs with low off-target effects. Further, small molecules based on the binding homology search in ligand and receptor similarity were introduced. Finally, the critical amino acids on CD25 were targeted by a de novo designed peptide with disulfide bond. Hence we introduced computational-based antagonists to lay a foundation for further in vitro and in vivo studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Simone Ruggeri ◽  
Johnny Habchi ◽  
Sean Chia ◽  
Robert I. Horne ◽  
Michele Vendruscolo ◽  
...  

AbstractSignificant efforts have been devoted in the last twenty years to developing compounds that can interfere with the aggregation pathways of proteins related to misfolding disorders, including Alzheimer’s and Parkinson’s diseases. However, no disease-modifying drug has become available for clinical use to date for these conditions. One of the main reasons for this failure is the incomplete knowledge of the molecular mechanisms underlying the process by which small molecules interact with protein aggregates and interfere with their aggregation pathways. Here, we leverage the single molecule morphological and chemical sensitivity of infrared nanospectroscopy to provide the first direct measurement of the structure and interaction between single Aβ42 oligomeric and fibrillar species and an aggregation inhibitor, bexarotene, which is able to prevent Aβ42 aggregation in vitro and reverses its neurotoxicity in cell and animal models of Alzheimer’s disease. Our results demonstrate that the carboxyl group of this compound interacts with Aβ42 aggregates through a single hydrogen bond. These results establish infrared nanospectroscopy as a powerful tool in structure-based drug discovery for protein misfolding diseases.


Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 54
Author(s):  
Eun-Song Lee ◽  
Jeong Min Lee ◽  
Hea-Jin Kim ◽  
Young-Pil Kim

Aptamers are single-stranded DNA or RNA molecules that can be identified through an iterative in vitro selection–amplification process. Among them, fluorogenic aptamers in response to small molecules have been of great interest in biosensing and bioimaging due to their rapid fluorescence turn-on signals with high target specificity and low background noise. In this review, we report recent advances in fluorogenic aptasensors and their applications to in vitro diagnosis and cellular imaging. These aptasensors modulated by small molecules have been implemented in different modalities that include duplex or molecular beacon-type aptasensors, aptazymes, and fluorogen-activating aptamer reporters. We highlight the working principles, target molecules, modifications, and performance characteristics of fluorogenic aptasensors, and discuss their potential roles in the field of biosensor and bioimaging with future directions and challenges.


2020 ◽  
Author(s):  
Sumit Handa ◽  
Andres Reyna ◽  
Timothy Wiryaman ◽  
Partho Ghosh

Abstract Diversity-generating retroelements (DGRs) vary protein sequences to the greatest extent known in the natural world. These elements are encoded by constituents of the human microbiome and the microbial ‘dark matter’. Variation occurs through adenine-mutagenesis, in which genetic information in RNA is reverse transcribed faithfully to cDNA for all template bases but adenine. We investigated the determinants of adenine-mutagenesis in the prototypical Bordetella bacteriophage DGR through an in vitro system composed of the reverse transcriptase bRT, Avd protein, and a specific RNA. We found that the catalytic efficiency for correct incorporation during reverse transcription by the bRT-Avd complex was strikingly low for all template bases, with the lowest occurring for adenine. Misincorporation across a template adenine was only somewhat lower in efficiency than correct incorporation. We found that the C6, but not the N1 or C2, purine substituent was a key determinant of adenine-mutagenesis. bRT-Avd was insensitive to the C6 amine of adenine but recognized the C6 carbonyl of guanine. We also identified two bRT amino acids predicted to nonspecifically contact incoming dNTPs, R74 and I181, as promoters of adenine-mutagenesis. Our results suggest that the overall low catalytic efficiency of bRT-Avd is intimately tied to its ability to carry out adenine-mutagenesis.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Akshaykumar Nayak ◽  
Himani Saxena ◽  
Chandramohan Bathula ◽  
Tarkeshwar Kumar ◽  
Souvik Bhattacharjee ◽  
...  

Abstract Background Despite numerous efforts to eradicate the disease, malaria continues to remain one of the most dangerous infectious diseases plaguing the world. In the absence of any effective vaccines and with emerging drug resistance in the parasite against the majority of anti-malarial drugs, the search for new drugs is urgently needed for effective malaria treatment. Methods The goal of the present study was to examine the compound library, based on indoles generated through diversity-oriented synthesis belonging to four different architecture, i.e., 1-aryltetrahydro/dihydro-β-carbolines and piperidine/pyrrolidine-fused indole derivatives, for their in vitro anti-plasmodial activity. Trifluoroacetic acid catalyzed transformation involving tryptamine and various aldehydes/ketones provided the library. Results Among all the compounds screened, 1-aryltetrahydro-β-carbolines 2 and 3 displayed significant anti-plasmodial activity against both the artemisinin-sensitive and artemisinin-resistant strain of Plasmodium falciparum. It was observed that these compounds inhibited the overall parasite growth in intra-erythrocytic developmental cycle (IDC) via reactive oxygen species-mediated parasitic death and thus could be potential anti-malarial compounds. Conclusion Overall the compounds 2 and 3 identified in this study shows promising anti-plasmodial activity that can kill both artemisinin-sensitive and artemisinin-resistant strains of P. falciparum.


Sign in / Sign up

Export Citation Format

Share Document