scholarly journals Energy Performance Analysis of B1-3.5mm Burner Model of Fasobio-15 Biodigester Biogas Cookstoves

Author(s):  
Noufou Bagaya ◽  
Issaka Ouedraogo ◽  
Daniel Windé Nongué Koumbem ◽  
Gwladys Wendwaoga Sandwidi ◽  
Florent Pelega Kieno

In Burkina Faso, finding wood for cooking is still a headache for rural households due to the advancing desert. Here, we try to bring a new way for farmers who already have a biodigester and convince those who are reluctant to adopt this work to reduce their dependence on wood. For this purpose, a characterization of the energy performance of biogas stoves is carried out based on the three-phase water heating test protocol called Water Boiling Test (WBT). The fuel used in the study is the biogas produced by a batch biodigester fed with pig manure. The analysis of the produced biogas shows a methane content of 60% and maximum hydrogen sulfide of 400ppm. The heat balance shows a loss of 11% in the walls of the cookstove and about 36% in the flue gas. Thus the energy performance of the furnace is estimated at 53%, a combustion rate of 6.4 L /min and the average boiling time is 50 minutes. Given these results, we suggest that households use biogas fuel and the B1-3.5mm burner in the cookstove as a replacement for the other burners. We intend to carry out a controlled cooking test on this stove, a modeling of the biogas production and its consumption in this type of burner.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


2015 ◽  
Vol 787 ◽  
pp. 803-808 ◽  
Author(s):  
A. Deepanraj ◽  
S. Vijayalakshmi ◽  
J. Ranjitha

The present research paper describes about the anaerobic digestion of vegetable (Banana, Cauliflower, potato, and sweet potato) and flower wastes (Rose, sambangi, gulmohar, marigold, golden shower tree, silk tree mimosa) in a 1L capacity of anaerobic digestor using pig manure as an inoculums. The digester was operated in the ratio of 1:1 of substrate to inoculums at RT. The substrate concentrations are varied such as 5%, 7%, and 10% was used and amount of gas produced was analysed using digital pressure gauge. The results obtained showed that, marigold flower had given higher yield of biogas than vegetable wastes and the digestion period was less. The average biogas production potential of withered flowers was observed as 14.36 g/kg in 5 days, where in case of vegetable wastes it was 10.0234 g/kg in 6 days. The study showed that flowers which are available in abundant in India is thrown away within a day, in the environment. These feedstocks are good feed stock for the production of biogas. The generation of biogas from flowers and vegetable waste upholds the concept of waste to wealth in enhancing sustainability of development. The future research work is mainly focused on the characterization of the main component present in the bio-gas using sophisticated instruments.


2020 ◽  
Vol 237 ◽  
pp. 06017
Author(s):  
Fuchao Liu ◽  
Fan Yi

We report on a spectrally-resolved Raman lidar that can simultaneously profile backscattered Raman spectrum signals from water vapor, water droplets and ice crystals as well as aerosol fluorescence in the atmosphere. The lidar emits a 354.8-nm ultraviolet laser radiation and samples echo signals in the 393.0-424.0 nm wavelength range with a 1.0-nm spectral resolution. A spectra decomposition method is developed to retrieve fluorescence spectra, water vapor Raman spectra and condensed (liquid and/or ice) water Raman spectra successively. Based on 8 different clear-sky nighttime measurement results, the entire atmospheric water vapor Raman spectra are for the first time obtained by lidar. The measured normalized water vapor Raman spectra are nearly invariant and can serve as background reference for atmospheric water phase state identification under various weather conditions. For an ice virga event, it’s found the extracted condensed water Raman spectra are highly similar in shape to theoretical ice water Raman spectra reported by Slusher and Derr (1975). In conclusion, the lidar provides an effective way to measure three-phase water simultaneously in the atmosphere and to study of cloud microphysics as well as interaction between aerosols and clouds.


Author(s):  
U. A. Adekola ◽  
I. Eiroboyi ◽  
Y. Yerima ◽  
T. E. B. Akinmoji ◽  
L. O. Uti

The need for an environmentally friendly energy source in the world has led to major diversification in renewable energy. Biogas provides a renewable energy source that will replace fossil fuel inevitably. The experiment was carried out using a self-designed laboratory-scale anaerobic biogas digester. The study was carried out at room temperature from 25 - 31°C for 20 days using corn stalk as the main substrate while Pig manure and eggshell were used as co-substrates. The findings showed that the biogas produced from the sample containing a blend of corn stalk, Pig manure, and eggshell resulted in higher biogas volume than the sample containing corn stalk and eggshell, corn stalk, and pig manure as well as the sample containing only corn stalk. This implies that the use of the corn stalk blend is a source of renewable energy. Thus, ensuring the sustainability of biogas production in the future.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 539 ◽  
Author(s):  
Renfei Li ◽  
Wenbing Tan ◽  
Xinyu Zhao ◽  
Qiuling Dang ◽  
Qidao Song ◽  
...  

Wood waste generated during the tree felling and processing is a rich, green, and renewable lignocellulosic biomass. However, an effective method to apply wood waste in anaerobic digestion is lacking. The high carbon to nitrogen (C/N) ratio and rich lignin content of wood waste are the major limiting factors for high biogas production. NaOH pre-treatment for lignocellulosic biomass is a promising approach to weaken the adverse effect of complex crystalline cellulosic structure on biogas production in anaerobic digestion, and the synergistic integration of lignocellulosic biomass with low C/N ratio biomass in anaerobic digestion is a logical option to balance the excessive C/N ratio. Here, we assessed the improvement of methane production of wood waste in anaerobic digestion by NaOH pretreatment, co-digestion technique, and their combination. The results showed that the methane yield of the single digestion of wood waste was increased by 38.5% after NaOH pretreatment compared with the untreated wood waste. The methane production of the co-digestion of wood waste and pig manure was higher than that of the single digestion of wood waste and had nonsignificant difference with the single-digestion of pig manure. The methane yield of the co-digestion of wood waste pretreated with NaOH and pig manure was increased by 75.8% than that of the untreated wood waste. The findings indicated that wood waste as a sustainable biomass source has considerable potential to achieve high biogas production in anaerobic digestion.


2020 ◽  
Vol 145 ◽  
pp. 02065
Author(s):  
Xiaohong Huang ◽  
Jing Jiao ◽  
Jihua Du ◽  
Zunxiang Li

Using agricultural wastes for anaerobic fermentation to produce biogas can not only realize the resource utilization of the wastes, but also prevent the environmental issues caused by straw burning. Sugarcane leaves contain waxy layer, which will cause problems such as difficulty in degradation, long-time fermentation and low biogas production. This paper studies the effects on three pre-processing methods of adding rush rot agent, natural retting for 7 days and water moisture for 24 hours of dry anaerobic fermentation of sugarcane leaves and pig manure. The results show that natural retting for 7 days has the advantage of daily biogas production when the fermentation period is less than 20 days, but this method is not obviously different from that of water moisture for 24 hours. When taking total biogas production volume and volume loading rate as the indicators, water moisture for 24 hours is the best pre-processing method for dry anaerobic fermentation of sugarcane leaves and pig manure when the fermentation period is more than 20 days.


SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 0799-0808 ◽  
Author(s):  
H.. Shahverdi ◽  
M.. Sohrabi

Summary Large quantities of oil usually remain in oil reservoirs after conventional waterfloods. A significant part of this remaining oil can still be economically recovered by water-alternating-gas (WAG) injection. WAG injection involves drainage and imbibition processes taking place sequentially; therefore, the numerical simulation of the WAG process requires reliable knowledge of three-phase relative permeability (kr) accounting for cyclic-hysteresis effects. In this study, the results of a series of unsteady-state two-phase displacements and WAG coreflood experiments were used to investigate the behavior of three-phase kr and hysteresis effects in the WAG process. The experiments were performed on two different cores with different characteristics and wettability conditions. An in-house coreflood simulator was developed to obtain three-phase relative permeability values directly from unsteady-state WAG experiments by history matching the measured recovery and differential-pressure profiles. The results show that three-phase gas relative permeability is reduced in consecutive gas-injection cycles and consequently the gas mobility and injectivity drop significantly with successive gas injections during the WAG process, under different rock conditions. The trend of hysteresis in the relative permeabilty of gas (krg) partly contradicts the existing hysteresis models available in the literature. The three-phase water relative permeability (krw) of the water-wet (WW) core does not exhibit considerable hysteresis effect during different water injections, whereas the mixed-wet (MW) core shows slight cyclic hysteresis. This may indicate a slight increase of the water injectivity in the subsequent water injections in the WAG process under MW conditions. Insignificant hysteresis is observed in the oil relative permeability (kro) during different gas-injection cycles for both WW and MW rocks. However, a considerable cyclic-hysteresis effect in kro is observed during water-injection cycles of WAG, which is attributed to the reduction of the residual oil saturation (ROS) during successive water injections. The kro of the WW core exhibits much-more cyclic-hysteresis effect than that of the MW core. No models currently exist in reservoir simulators that can capture the observed cyclic-hysteresis effect in oil relative permeability for the WAG process. Investigation of relative permeability data obtained from these displacement tests at different rock conditions revealed that there is a significant discrepancy between two-phase and three-phase relative permeability of all fluids. This highlights that not only the three-phase relative permeability of the intermediate phase (oil), but also the three-phase kr of the wetting phase (water) and nonwetting phase (gas) are functions of two independent saturations.


Sign in / Sign up

Export Citation Format

Share Document