scholarly journals MECHANICALLY COUPLED BUOYANT FLAPS: THEORY AND EXPERIMENT

1986 ◽  
Vol 1 (20) ◽  
pp. 180
Author(s):  
Charles K. Sollitt ◽  
Chung-Pan Lee ◽  
William G. McDougal ◽  
Thomas J. Perry

A system composed of two buoyant flaps hinged at the sea floor and coupled with weighted mooring lines is modeled analytically and experimentally. The system behavior is described theoretically utilizing an eigenseries representation of linear wave theory in the vicinity of the breakwater. The structure dynamics are modeled in terms of structure weight, inertia, buoyancy, damping, mooring line tension and the wave pressure field. The mechanically coupled system provides shelter by reflecting incident waves and by attenuating wave energy through structural and viscous damping. The structure can be tuned to minimize wave transmission within a particular frequency range by changing the flap spacing and adjusting the mass and equilibrium position of the mooring line weights. The theory is validated with experimental results for models fabricated from inflatable, parallel-tube membranes. Buoyancy and inertia are changed by filling tubes with air and/or water. Single and double flaps are examined with and without mooring lines. Incident, reflected, and transmitted waves are measured as well as flap motion. Theoretical results are corroborated by the experiments and the importance of including damping in the model is demonstrated.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8316
Author(s):  
Hao Li ◽  
Junhua Chen ◽  
Lingjie Bao ◽  
Chuhua Jiang

In this study, a new type of double-pontoon floating breakwater was designed to improve the wave attenuation performance through the addition of suspended Savonius propeller-blade. Its hydrodynamic characteristics were studied through numerical simulations and performance-testing experiment. The following investigations were performed in this study: Firstly, wave theory and hydrodynamic theory were combined to calculate the wave attenuation performance and motion response of double-pontoon floating breakwater under linear wave conditions. The numerical results showed that the wave attenuation performance was better under a specific wave period and height, the transmission coefficient reached a relatively small value, and the mooring line tension responded periodically and satisfied the condition of maximum breaking force. Secondly, three key geometric parameters of breakwater were researched, including the relative spacing of pontoons, the relative spacing between pontoons and blades, and the height–diameter ratio of Savonius blades. The calculation results showed that the pontoon spacing was closer to the wavelength and the breakwater wave attenuation performance was better. Lastly, experimental tests were also performed on the new double-pontoon floating breakwater and the results showed that the wave attenuation performance and numerical projections were basically the same, which verified the validity and effectiveness of the design method.


2021 ◽  
Vol 9 (9) ◽  
pp. 960
Author(s):  
Chun Bao Li ◽  
Mingsheng Chen ◽  
Joonmo Choung

It is essential to design a reasonable mooring line length that ensures quasi-static responses of moored floating structures are within an acceptable level, and that reduces the cost of mooring lines in the overall project. Quasi-static responses include the equilibrium position and the line tension of a moored floating structure (also called the mean value in a dynamic response), etc. The quasi-static responses derived by the classic catenary equation cannot present mooring–seabed interaction and hydrodynamic effects on a mooring line. While a commercial program can predict reasonable quasi-static responses, costly modeling is required. This motivated us to propose a new method for predicting quasi-static responses that minimizes the mechanical energy of the whole system based on basic geometric parameters, and that is easy to implement. In this study, the mechanical energy of moored floating structures is assumed to be the sum of gravitational–buoyancy potential energy, kinetic energy induced by drag forces, and spring potential energy derived by line tension. We introduce fundamental theoretical background for the development of the proposed method. We investigate the effect of quasi-static actions on mooring response, comparing the proposed method’s results with those from the catenary equation and ABAQUS software. The study reveals the shortcomings of the catenary equation in offshore applications. We also compare quasi-static responses derived by the AQWA numerical package with the results calculated from the proposed method for an 8 MW WindFloat 2 type of platform. Good agreement was drawn between the proposed method and AQWA. The proposed method proves more timesaving than AQWA in terms of modeling of mooring lines and floaters, and more accurate than the catenary equation, and can be used effectively in the early design phase of dimension mooring lengths for moored floating structures.


2020 ◽  
Vol 8 (2) ◽  
pp. 82
Author(s):  
Hui Yang ◽  
Yun-Peng Zhao ◽  
Chun-Wei Bi ◽  
Yong Cui

Enclosure aquaculture is a healthy and ecological aquaculture pattern developed in recent years to relieve the pressure due to the wild fish stock decline and water pollution. The object of this paper was a floating rope enclosure, which mainly consisted of floaters, mooring lines, sinkers and a net. In order to optimize mooring design factors, the hydrodynamic responses of the floating rope enclosure with different mooring systems in combined wave-current were investigated by experimental and numerical methods. Physical model experiments with a model scale of 1:50 were performed to investigate the hydrodynamic characteristics of a floating rope enclosure with 12 mooring lines. Based on the lumped mass method, the numerical model was established to investigate the effects of mooring design factors on the mooring line tension, force acting on the bottom, and the volume retention of the floating rope enclosure. Through the analysis of numerical and experimental results, it was found that the maximum mooring line tension of the floating rope enclosure occurs on both sides of the windward. Increasing the number of mooring lines on the windward side is helpful to reduce the maximum mooring line tension. Waves and current both have an influence on the mooring line tension; in contrast, currents have a more obvious effect on the mooring line tension than waves. However, the influence of the wave period on the maximum mooring line tension is small. The force endured by the bottom of the floating rope enclosure also changes periodically with the wave period. Yet, the maximum force endured by the bottom of floating rope enclosure occurred at the windward and leeward of the structure. The volume retention of the floating rope enclosure increased with the increasing amount of mooring lines.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yuanhui Wang ◽  
Chuntai Zou ◽  
Fuguang Ding ◽  
Xianghui Dou ◽  
Yanqin Ma ◽  
...  

FPSO is widely used during the deep-sea oil and gas exploration operations, for which it is an effective way to keep their position by means of positioning mooring (PM) technology to ensure the long-term reliability of operations, even in extreme seas. Here, a kind of dynamic positioning (DP) controller in terms of structural reliability is presented for the single-point turret-moored FPSOs. Firstly, the mathematical model of the moored FPSO in terms of kinematics and dynamics is established. Secondly, the catenary method is applied to analyze the mooring line dynamics, and mathematical model of one single mooring line is set up based on the catenary equation. Thereafter, mathematical model for the whole turret mooring system is established. Thirdly, a structural reliability index is defined to evaluate the breaking strength of each mooring line. At the same time, control constraints are also considered to design a state feedback controller using the backstepping technique. Finally, a series of simulation tests are carried out for a certain turret-moored FPSO with eight mooring lines. It is shown in the simulation results that the moored FPSO can keep its position well in extreme seas. Besides, the FPSO mooring line tension is reduced effectively to ensure mooring lines safety to a large extent in harsh sea environment.


Author(s):  
Yuan Hongtao ◽  
Zeng Ji ◽  
Chen Gang ◽  
Mo Jian ◽  
Zhao Nan

This paper applies 3D potential theory and non-linear time domain coupled analysis method to analyze motion response of FPSO and dynamic response of mooring line of single mooring system. In addition, respectively to calculate mooring line tension of tension type and composite mooring line type and added buoy in mooring line. There the paper analyze different mooring lines to affect on the weight of single point mooring system of deepwater FPSO. Which expects to provide a theoretical basis for single point mooring system design and weight control.


Author(s):  
P. Chen ◽  
S. Chai ◽  
J. Ma

In order to investigate the effect of taut-wire mooring system on the motion performance of semi-submersible platforms, parametric studies of coupled motion responses are conducted using a time domain analysis in this study. The nonlinear dynamic characteristics of mooring lines and the interactions of platform and mooring lines are investigated. The parametric studies consist of investigating the effects of the hydrodynamic coefficients CA and CD of mooring line, tension dip angle, mooring line pretension, different taut-mooring arrangements and total number of mooring lines on the motion performance of a semi-submersible platform in water depth of 1500 meters, which is subjected to a 100 year return significant wave height of 13.3 meters, a peak period of 15.5 seconds, a current speed of 1.97 meters per second and wind speed of 55 meters per second. The wind and current both act in the same direction as the ocean waves in this study in order to estimate the maximum mooring line loads. The environmental load direction is varied from 0° to 90° at the interval of 15 degrees. Seven directions are calculated in total. The research results show that the different parameters, such as the hydrodynamic coefficients of the mooring line, tension dip angle, pre-tension, arrangement angle of mooring lines and total number of mooring lines, have different effects on the coupled motion responses. In particular, the arrangement angles of mooring lines have significant effect on motion responses and dynamic loads of mooring lines. The motion performance of semi-submersible platform and mooring line dynamic loads can be controlled effectively when these parameters are selected reasonably throughout parametric studies carefully designed and conducted.


2011 ◽  
Vol 137 ◽  
pp. 50-58
Author(s):  
Jin Wei Sun ◽  
Xiu Tao Fan ◽  
Xiao Zheng Wan ◽  
Shi Xuan Liu

The motion performance of Spar platform and dynamic characteristics for the mooring lines under different mooring configurations have been studied both in static analysis and coupled dynamic analysis. First, 3D hydrodynamic finite element model is built and the effects of the mooring system are taken into account by giving the specified pre-tension, angle and stiffness of the mooring lines on the fairleads. And hydrodynamic analysis of Spar platform is performed by the way of utilizing potential flow theory in frequency domain in order to calculate the hydrodynamic coefficients. Then, static analysis is applied to obtain restoring stiffness curves for the mooring system, structure displacements and mooring line tensions etc.. At last, coupled time domain analysis of the motion response of Spar is conducted for the coupled system and the dynamic tensions of mooring lines are calculated. The research results can be served as a reference for the selection and the performance study for mooring systems during preliminary design.


1974 ◽  
Vol 1 (14) ◽  
pp. 112
Author(s):  
Uygur Sendil ◽  
W.H. Graf

Theoretical solutions for the transmission beyond and reflection of waves from fixed and floating plates are based upon linear wave theory, as put forth by John (1949), and Stoker (1957), according to which the flow is irrotational, the fluid is incompressible and frictionless, and the waves are of small amplitude. The resulting theoretical relations are rather complicated, and furthermore, it is assumed that the water depth is very small in comparison to the wave length. Wave transmissions beyond floating horizontal plates are studied in a laboratory wave flume. Regular (harmonic) waves of different heights and periods are generated. The experiments are carried out over a range of wave heights from 0.21 to 8.17 cm (0.007 to 0.268 ft), and wave periods from 0.60 to 4.00 seconds in water depth of 15.2, 30.5, and 45.7 cm (0.5, 1.0 and 1.5 ft). Floating plates of 61, 91 and 122 cm (2, 3 and 4 ft) long were used. From the analyses of regular waves it was found that: (1) the transmission coefficients, H /H , obtained from the experiments are usually less than those obtained from the theory. This is due to the energy dissipation by the plate, which is not considered in the theory. (2) John's (1949) theory predicts the transmission coefficients, H /H , reasonably well for a floating plywood plate, moored to the bottom and under the action of non-breaking incident waves of finite amplitude. (3) a floating plate is less effective in damping the incident waves than a fixed plate of the same length.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6407
Author(s):  
Niccolo Bruschi ◽  
Giulio Ferri ◽  
Enzo Marino ◽  
Claudio Borri

The spar buoy platform for offshore wind turbines is the most utilized type and the OC3 Hywind system design is largely used in research. This system is usually moored with three catenary cables with 120° between each other. Adding clump weights to the mooring lines has an influence on the platform response and on the mooring line tension. However, the optimal choice for their position and weight is still an open issue, especially considering the multitude of sea states the platform can be exposed to. In this study, therefore, an analysis on the influence of two such variables on the platform response and on the mooring line tension is presented. FAST by the National Renewable Energy Laboratory (NREL) is used to perform time domain simulations and Response Amplitude Operators are adopted as the main indicators of the clump weights effects. Results show that the clump weight mass is not as influential as the position, which turns out to be optimal, especially for the Surge degree of freedom, when closest to the platform.


Author(s):  
Xutian Xue ◽  
Nian-Zhong Chen

This paper is to perform T-N curves and fracture mechanics based fatigue analysis for mooring lines of a semi-submersible installed in Gulf of Mexico (GoM). The wave frequency (WF) and the low frequency (LF) load processes are regarded as two random processes and the load combination of the two processes is considered. Frequency-domain analysis is then conducted for calculating the tension ranges along hybrid-material mooring lines induced by motions of WF, LF and the combined WF and LF. The narrow-banded spectral method is used for calculating the mooring line tension and the fatigue damage of mooring lines is estimated by T-N curves and fracture mechanics based approaches. The fracture mechanics based analysis is combined with a finite element analysis to predict crack propagation at different locations of a studless chain link. It was found that the crown section of a mooring chain is the most critical location subjected to fatigue failure in a studless chain link. The most critical points prone to fatigue failure of the catenary and taut mooring systems designed for the semi-submersible are at the bottom end of top line and the top end of bottom line, respectively. Also, fatigue lives of mooring lines in the catenary mooring system are generally longer than those of the taut mooring system. In addition, a comparison between fatigue lives of mooring lines predicted by T-N curves and fracture mechanics based approaches shows that the results estimated by both approaches are generally comparable.


Sign in / Sign up

Export Citation Format

Share Document